Synlett 2023; 34(03): 211-220
DOI: 10.1055/a-1970-4290
account

Recent Progress towards the Transition-Metal-Catalyzed Dearomatizing Spirocyclization Reactions of Indolyl Ynones

Kua-Fei Wei
a   College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, P. R. of China
,
Xiao-Lei Jiang
a   College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, P. R. of China
b   Sanmenxia Polytechnic, Sanmenxia, Henan 472000, P. R. of China
,
Guang-Xin Ru
a   College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, P. R. of China
,
Xiu-Hong Zhu
a   College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, P. R. of China
,
Wen-Bo Shen
a   College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou 450002, P. R. of China
› Author Affiliations
We are grateful for the financial support from the NNSFC (22001059), the Top-Notch Talents Program of Henan Agricultural University (30500739).


Abstract

Dearomatizing spirocyclization reactions are very appealing synthetic strategies to generate functionalized three-dimensional scaffolds from simple two-dimensional precursors. Recently, the field of transition-metal-catalyzed dearomatizing spirocyclization reactions of indolyl ynones has burgeoned, as the construction of synthetically challenging quaternary spirocyclic carbons is easily achieved. In this review, we introduce an overview of advances in the transition-metal-catalyzed dearomatizing spirocyclization reactions of indolyl ynones, with the reactions being categorized according to type of catalyst.



Publication History

Received: 17 October 2022

Accepted after revision: 30 October 2022

Accepted Manuscript online:
30 October 2022

Article published online:
06 December 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For selected examples, see:
    • 1a Liu C.-T, Wang Q.-W, Wang C.-H. J. Am. Chem. Soc. 1981; 103: 4634
    • 1b Franz AK, Hanhan NV, Ball-Jones NR. ACS Catal. 2013; 3: 540
    • 1c Jadulco R, Edrada RA, Ebel R, Berg A, Schaumann K, Wray V, Steube K, Proksch P. J. Nat. Prod. 2004; 67: 78
    • 1d Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 1e Zheng Y, Tice CM, Singh SB. Bioorg. Med. Chem. Lett. 2014; 24: 3673
    • 1f Zhou X.-J, Liu H.-Y, Mo Z.-Y, Ma X.-L, Chen Y.-Y, Tang H.-T, Pan Y.-M, Xu Y.-L. Chem. Asian J. 2020; 15: 1536
    • 2a Zheng C, You S.-L. Acc. Chem. Res. 2020; 53: 974
    • 2b Varlet T, Matišić M, Elslande EV, Neuville L, Gandon V, Masson G. J. Am. Chem. Soc. 2021; 143: 11611
    • 2c Nie Y.-H, Komatsuda M, Yang P, Zheng C, Yamaguchi J, You S.-L. Org. Lett. 2022; 24: 1481
    • 2d Becker A, Grugel CP, Breit B. Org. Lett. 2021; 23: 3788
    • 2e Sabat N, Soualmia F, Retailleau P, Benjdia A, Berteau O, Guinchard X. Org. Lett. 2020; 22: 4344
    • 2f Wu Q.-F, He H, Liu W.-B, You S.-L. J. Am. Chem. Soc. 2010; 132: 11418
    • 2g Zhang Y.-Q, Chen Y.-B, Liu J.-R, Wu S.-Q, Fan X.-Y, Zhang Z.-X, Hong X, Ye L.-W. Nat. Chem. 2021; 13: 1093
    • 3a Zhang B, Li X, Ai Z, Zhao B, Yu Z, Du Y. Org. Lett. 2022; 24: 390
    • 3b Ho HE, Pagano A, Rossi-Ashton JA, Donald JR, Epton RG, Churchill JC, James MJ, O’Brien P, Taylor RJ. K, Unsworth WP. Chem. Sci. 2020; 11: 1353

      For selected reviews, see:
    • 4a Zhuo C.-X, Zheng C, You S.-L. Acc. Chem. Res. 2014; 47: 2558
    • 4b Liebov BK, Harman WD. Chem. Rev. 2017; 117: 13721
    • 4c Remy R, Bochet CG. Chem. Rev. 2016; 116: 9816
    • 4d Wang D.-S, Chen Q.-A, Lu S.-M, Zhou Y.-G. Chem. Rev. 2012; 112: 2557
    • 4e Ortiz FL, Iglesias MJ, Fernández I, Sánchez CM. A, Gómez GR. Chem. Rev. 2007; 107: 1580
    • 4f Pape AR, Kaliappan KP, Kündig EP. Chem. Rev. 2000; 100: 2917

      For selected reviews, see:
    • 5a Zheng C, You S.-L. Acc. Chem. Res. 2020; 53: 974
    • 5b Zheng C, You S.-L. ACS Cent. Sci. 2021; 7: 432
    • 5c Saya JM, Ruijter E, Orru RV. A. Chem. Eur. J. 2019; 25: 8916
    • 5d Roche SP, Tendoung J.-JY. Tréguier B. Tetrahedron 2015; 71: 3549

      For selected reviews, see:
    • 6a Zheng Z, Ma X, Cheng X, Zhao K, Gutman K, Li T, Zhang L. Chem. Rev. 2021; 121: 8979
    • 6b Zhang L. Acc. Chem. Res. 2014; 47: 877
    • 6c Yeom H.-S, Shin S. Acc. Chem. Res. 2014; 47: 966
    • 6d Dorel R, Echavarren AM. Chem. Rev. 2015; 115: 9028
    • 6e Qian D, Zhang J. Chem. Soc. Rev. 2015; 44: 677
    • 6f Ye L.-W, Zhu X.-Q, Sahani RL, Xu Y, Qian P.-C, Liu R.-S. Chem. Rev. 2021; 121: 9039
    • 6g Shen W.-B, Tang X.-T. Org. Biomol. Chem. 2019; 17: 7106
    • 6h Ru G.-X, Zhang T.-T, Zhang M, Jiang X.-L, Wan Z.-K, Zhu X.-H, Shen W.-B, Gao G.-Q. Org. Biomol. Chem. 2021; 19: 5274
    • 6i Gao G.-Q, Ma G, Jiang X.-L, Liu Q, Fan C.-L, Lv D.-C, Su H, Ru G.-X, Shen W.-B. Org. Biomol. Chem. 2022; 20: 5035
    • 6j Tang X.-T, Yang F, Zhang T.-T, Liu Y.-F, Liu S.-Y, Su T.-F, Lv D.-C, Shen W.-B. Catalysts 2020; 10: 350
    • 7a Fedoseev P, Coppola G, Ojeda GM, Eycken EV. V. Chem. Commun. 2018; 54: 3625
    • 7b Fedoseev P, Eycken EV. Chem. Commun. 2017; 53: 7732
    • 7c Han G, Xue L, Zhao L, Zhu T, Hou J, Song Y, Liu Y. Adv. Synth. Catal. 2019; 361: 678

      For selected examples, see:
    • 8a Shen W.-B, Tang X.-T, Zhang T.-T, Lv D.-C, Zhao D, Su T.-F, Meng L. Org. Lett. 2021; 23: 1285
    • 8b Shen W.-B, Zhang T.-T, Zhang M, Wu J.-J, Jiang X.-L, Ru G.-X, Gao G.-Q, Zhu X.-H. Org. Chem. Front. 2021; 8: 4960
    • 8c Shen W.-B, Tang X.-T, Zhang T.-T, Liu S.-Y, He J.-M, Su T.-F. Org. Lett. 2020; 22: 6799
    • 8d Zheng Y, Zhang T.-T, Shen W.-B. Org. Biomol. Chem. 2021; 19: 9688
    • 8e Zhang T.-T, Wei K.-F, Ru G.-X, Zhu X.-H, Xie L.-X, Shen W.-B. Synlett 2022; in press DOI: 10.1055/a-1957-4104.
  • 9 James MJ, Cuthbertson JD, O’Brien P, Taylor RJ. K, Unsworth WP. Angew. Chem. Int. Ed. 2015; 54: 7640
  • 10 Clarke AK, James MJ, O’Brien P, Taylor RJ. K, Unsworth WP. Angew. Chem. Int. Ed. 2016; 55: 13798

    • For Ag-NPs in catalysis, see:
    • 11a Bhosale MA, Bhanage BM. Curr. Org. Chem. 2015; 19: 708
    • 11b Cong H, Porco JA. ACS Catal. 2012; 2: 65
    • 11c Shimizu K.-I, Sato R, Satsuma A. Angew. Chem. Int. Ed. 2009; 48: 3982
    • 11d Mitsudome T, Arita S, Mori H, Mizugaki T, Jitsukawa K, Kaneda K. Angew. Chem. Int. Ed. 2008; 47: 7938
    • 11e Qi C, Qin T, Suzuki D, Porco JA. J. Am. Chem. Soc. 2014; 136: 3374
  • 12 Liddon JT. R, Clarke AK, Taylor RJ. K, Unsworth WP. Org. Lett. 2016; 18: 6328
  • 13 Liddon JT. R, Rossi-Ashton JA, Clarke AK, Lynam JM, Taylor RJ. K, Unsworth WP. Synthesis 2018; 50: 4829
  • 14 Ho HE, Stephens TC, Payne TJ, O’Brien P, Taylor RJ. K, Unsworth WP. ACS Catal. 2019; 9: 504

    • For prominent examples of the use of Pd-catalysis in dearomatizing spirocyclization, see:
    • 15a Kimura M, Futamata M, Mukai R, Tamaru Y. J. Am. Chem. Soc. 2005; 127: 4592
    • 15b Rousseaux S, García-Fortanet J, Del Aguila Sanchez MA, Buchwald SL. J. Am. Chem. Soc. 2011; 133: 9282
    • 15c Wu K.-J, Dai LX, You S.-L. Org. Lett. 2012; 14: 3772
    • 15d Montgomery TD, Nibbs AE, Zhu Y, Rawal VH. Org. Lett. 2014; 16: 3480
    • 15e Gao S, Wu Z, Fang X, Lin A, Yao H. Org. Lett. 2016; 18: 3906
    • 15f Hu W, Wang H, Bai L, Liu J, Luan X. Org. Lett. 2018; 20: 880
  • 16 Liddon JT. R, James MJ, Clarke AK, O’Brien P, Taylor RJ. K, Unsworth WP. Chem. Eur. J. 2016; 22: 8777
  • 17 Li C, Xue L, Zhou J, Zhao Y, Han G, Hou J, Song Y, Liu Y. Org. Lett. 2020; 22: 3291
    • 18a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 18b Meanwell NA. J. Med. Chem. 2018; 61: 5822
    • 18c Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 18d Wang J, Sánchez-Roselló M, Aceña JL, Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
  • 19 Inprung N, Ho HE, Rossi-Ashton JA, Epton RG, Whitwood AC, Lynam JM, Taylor RJ. K, James MJ, Unsworth WP. Org. Lett. 2022; 24: 668
  • 20 Ru G.-X, Zhang M, Zhang T.-T, Jiang X.-L, Gao G.-Q, Zhu X.-H, Wang S, Fan C.-L, Li X, Shen W.-B. Org. Chem. Front. 2022; 9: 2621