Synthesis 2018; 50(24): 4829-4836
DOI: 10.1055/s-0037-1610181
© Georg Thieme Verlag Stuttgart · New York

Divergent Reactivity of Indole-Tethered Ynones with Silver(I) and Gold(I) Catalysts: A Combined Synthetic and Computational Study

John T. R. Liddon
James A. Rossi-Ashton
Aimee K. Clarke
Jason M. Lynam*
Richard J. K. Taylor*
William P. Unsworth*

This work was conducted using funding from EPSRC (EP/M018601/01, J.T.R.L. and EP/R013748/1, A.K.C.), the University of York (J.A.R.-A., A.K.C., W.P.U.) and the Leverhulme Trust (Early Career Fellowship, ECF-2015-13, W.P.U.).
Further Information

Publication History

Received: 27 March 2018

Accepted after revision: 16 May 2018

Publication Date:
04 July 2018 (online)


A combined synthetic and computational (DFT) study has been performed to account for the divergent reactivity of indole-tethered ynones when treated with Ag(I) and Au(I) catalysts. The two catalyst systems deliver spirocyclic indolenines and carbazoles, respectively, from the same precursors, with the reaction outcomes believed to be a result of differences in the rates of a key protodemetalation step. A ring-opening/ring-closing isomerisation process is proposed to enable the interconversion of spirocyclic and C-2 annulated indole intermediates, in contrast to the 1,2-migration mechanism tentatively proposed in previous studies.

Supporting Information

  • References

  • 1 Mahatthananchai J. Dumas AM. Bode JW. Angew. Chem. Int. Ed. 2012; 51: 10954

    • For recent catalyst selective synthesis methods, see:
    • 2a Dooley JD. Chidipudi SR. Lam HW. J. Am. Chem. Soc. 2013; 135: 10829
    • 2b Cheng Q.-Q. Yedoyan J. Arman H. Doyle MP. J. Am. Chem. Soc. 2016; 138: 44
    • 2c Zhan G. Shi M.-L. He Q. Lin W.-J. Ouyang Q. Du W. Chen Y.-C. Angew. Chem. Int. Ed. 2016; 55: 2147
    • 2d Liao J.-Y. Ni Q. Zhao Y. Org. Lett. 2017; 19: 4074
    • 2e Mishra UK. Yadav S. Ramasastry SS. V. J. Org. Chem. 2017; 82: 6729
    • 2f Feng J.-J. Zhang J. ACS Catal. 2017; 7: 1533

      For examples from our groups, see:
    • 3a Liddon JT. R. James MJ. Clarke AK. O’Brien P. Taylor RJ. K. Unsworth WP. Chem. Eur. J. 2016; 22: 8777
    • 3b James MJ. O’Brien P. Taylor RJ. K. Unsworth WP. Angew. Chem. Int. Ed. 2016; 55: 9671
    • 3c Clarke A. K., Taylor R. J. K., Unsworth W. P.; Tetrahedron; 2018, in press; DOI: 10.1016/j.tet.2018.02.003.

      For related papers on the cyclisation of electron-rich aromatics onto tethered alkynes from our groups, see:
    • 4a Unsworth WP. Cuthbertson JD. Taylor RJ. K. Org. Lett. 2013; 15: 3306
    • 4b James MJ. Cuthbertson JD. O’Brien P. Taylor RJ. K. Unsworth WP. Angew. Chem. Int. Ed. 2015; 54: 7640
    • 4c James MJ. Clubley RE. Palate KY. Procter TJ. Wyton AC. O’Brien P. Taylor RJ. K. Unsworth WP. Org. Lett. 2015; 17: 4372
    • 4d Clarke AK. James MJ. O’Brien P. Taylor RJ. K. Unsworth WP. Angew. Chem. Int. Ed. 2016; 55: 13798
    • 4e James MJ. Grant ND. O’Brien P. Taylor RJ. K. Unsworth WP. Org. Lett. 2016; 18: 6256
    • 4f Liddon JT. R. Clarke AK. Taylor RJ. K. Unsworth WP. Org. Lett. 2016; 18: 6328
    • 4g Clarke AK. Liddon JT. R. Cuthbertson JD. Taylor RJ. K. Unsworth WP. Org. Biomol. Chem. 2017; 15: 233
    • 4h Clarke AK. Lynam JM. Taylor RJ. K. Unsworth WP. ACS Catal. 2018; 8: 6844

      For important contributions from other groups, see:
    • 5a Zhang X. Larock RC. J. Am. Chem. Soc. 2005; 127: 12230
    • 5b Dohi T. Nakae T. Ishikado Y. Kato D. Kita Y. Org. Biomol. Chem. 2011; 9: 6899
    • 5c Peshkov VA. Pereshivko OP. Van der Eycken EV. Adv. Synth. Catal. 2012; 354: 2841
    • 5d Schröder F. Erdmann N. Noël T. Luque R. Van der Eycken E. Adv. Synth. Catal. 2015; 357: 3141
    • 5e Schröder F. Sharma U. Mertens M. Devred F. Debecker D. Luque R. Van der Eycken E. ACS Catal. 2016; 6: 8156
    • 5f Magne V. Blanchard F. Marinetti A. Voituriez A. Guinchard X. Adv. Synth. Catal. 2016; 358: 3355
    • 5g He Y. Li Z. Tian G. Song L. Van Meervelt L. Van der Eycken EV. Chem. Commun. 2017; 53: 6413
    • 5h Jha M. Dhiman S. Cameron TS. Kumar D. Kumar A. Org. Lett. 2017; 19: 2038
    • 5i He Y. Robeyns K. Van Meervelt L. Van der Eycken EV. Angew. Chem. Int. Ed. 2018; 57: 272
    • 5j Vacala TL. Carlson PR. Arreola-Hester A. Williams CG. Makhoul EW. Vadola PA. J. Org. Chem. 2018; 83: 1493

      For related methods to prepare carbazoles, see:
    • 6a Wang L. Li G. Liu Y. Org. Lett. 2011; 13: 3786
    • 6b Hashmi AS. K. Yang W. Rominger F. Chem. Eur. J. 2012; 18: 6576
    • 6c Qiu Y. Fu C. Zhang X. Ma S. Chem. Eur. J. 2014; 20: 10314
    • 6d Suarez A. Suarez-Pantiga S. Nieto-Faza O. Sanz R. Org. Lett. 2017; 19: 5074
    • 6e Tharra P. Baire B. Org. Lett. 2018; 20: 1118
  • 7 James MJ. O’Brien P. Taylor RJ. K. Unsworth WP. Chem. Eur. J. 2016; 22: 2856
  • 8 A Brønsted acid catalysed variant of this quinoline-forming rearrangement was subsequently developed; see: Fedoseev P. Van der Eycken E. Chem. Commun. 2017; 53: 7732

    • For reviews on dearomatisation reactions, see:
    • 9a Liang X.-W. Zheng C. You S.-L. Chem. Eur. J. 2016; 22: 11918
    • 9b Roche SP. Youte Tendoung J.-J. Tréguier B. Tetrahedron 2015; 71: 3549
    • 9c Zhuo C.-X. Zhang W. You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
    • 9d Zhuo CX. Zheng C. You S.-L. Acc. Chem. Res. 2014; 47: 2558
    • 9e Zheng C. You S.-L. Chem 2016; 1: 830

      For the synthesis and biological properties of spirocycles, see reference 7 and:
    • 10a Rios R. Chem. Soc. Rev. 2012; 41: 1060
    • 10b Franz AK. Hanhan NV. Ball-Jones NR. ACS Catal. 2013; 3: 540
    • 10c Zheng Y. Tice CM. Singh SB. Bioorg. Med. Chem. Lett. 2014; 24: 3673
    • 10d Zheng Y.-J. Tice CM. Expert Opin. Drug Discovery 2016; 11: 831
    • 10e Chambers SJ. Coulthard G. Unsworth WP. O’Brien P. Taylor RJ. K. Chem. Eur. J. 2016; 22: 6496
    • 10f Müller G. Berkenbosch T. Benningshof JC. J. Stumpfe D. Bajorath J. Chem. Eur. J. 2017; 23: 703
    • 10g Adams K. Ball AK. Birkett J. Brown L. Chappell B. Lo PK. T. Patmore NJ. Rice CR. Ryan J. Raubo P. Sweeney JS. Nat. Chem. 2017; 9: 369
  • 11 Mézailles N. Ricard L. Gagosz F. Org. Lett. 2005; 7: 4133
  • 12 Gronnier C. Faudot dit Bel P. Henrion G. Kramer S. Gagosz F. Org. Lett. 2014; 16: 2092

    • For reviews on gold catalysis, see:
    • 13a Fürstner A. Chem. Soc. Rev. 2009; 38: 3208
    • 13b Jiménez-Núñez E. Echavarren AM. Chem. Rev. 2008; 108: 3326
    • 13c Li Z. Brower C. He C. Chem. Rev. 2008; 108: 3351
  • 14 For the use of ReactIR™ to monitor similar reactions, see reference 4d and: Unsworth WP. Kitsiou C. Taylor RJ. K. Org. Lett. 2013; 15: 258
  • 15 Ynones 1b, 1d and 1e are novel compounds. Ynone 1c has been used in a related study by Fedoseev and Van der Eycken (ref. 8).

    • For the structural characterisation of silver(I)–phosphine complexes, see:
    • 16a Bardají M. Crespo O. Laguna A. Fische AK. Inorg. Chim. Acta 2000; 304: 7
    • 16b Lettko L. Wood JS. Rausch MD. Inorg. Chim. Acta 2000; 308: 37
  • 17 Magné V. Marinettim A. Gandon V. Voituriez A. Guinchard X. Adv. Synth. Catal. 2017; 359: 4036
  • 18 Unfortunately, we were unable to directly observe a spirocyclic intermediate during the earlier described ReactIR™ studies on the Au(I) reaction system.
  • 19 To corroborate this, we had hoped that adding 1 equivalent of propanoic acid to the typical Au(I)-mediated reaction of 1a would enable spirocycle 6a to be produced, rather than carbazole 5a, by facilitating protodemetalation, but carbazole 5a was the only product isolated in this reaction.
  • 20 For a similar stepwise rearrangement involving the overall 1,2-migration of aza-spiroindolenines, see: Wu Q.-F. Zheng C. Zhuo C.-X. You S.-L. Chem. Sci. 2016; 7: 4453
  • 21 The protodemetalation step itself was not modelled. Because the nature of the base that is needed to facilitate the proton shuffle from the indolenine nitrogen to the carbon–metal bond is unclear, such calculations would fail to give meaningful results. Examination of the predicted structures of D revealed that there are no elemental intramolecular steps that could lead to protodemetalation; therefore, the proton shuffle is likely to be intermolecular.