Synthesis
DOI: 10.1055/s-0043-1763676
review
Bioisosteres

Synthesis and Biological Activity of Penaresidins A and B, Penazetidine A, and Related Analogues

Sean M. Burns
,
Timothy J. McClure
,
Seren G. Parikh
,
Corinna S. Schindler
National Science Foundation (NSF CHE-1654223)


Abstract

Since the first reports of their isolation, penaresidins A and B together with penazetidine A and related analogues have attracted interest from the synthetic community for their unique structural features, specifically the highly functionalized azetidine core. This review provides a comprehensive overview of the biological activity of the penaresidins, penazetidine, and their analogues together with reported synthetic strategies developed since their isolation.

1 Introduction

2 Biological Activity of Penaresidin A, Penaresidin B, and Penazetidine A and Related Analogues

3 Retrosynthetic Analysis

4 Penaresidin A Analogue (Kamikawa, 1995)

5 15-epi-Penaresidin A (Mori, 1995)

6 16-epi-Penazetidine A (Mori, 1996)

7 Penaresidin B (Yoda, 1997)

8 15-epi-Penaresidin B and Penaresidin B (Mori, 1997)

9 Penaresidin A and 16-nor-Penazetidine A (Knapp, 1997)

10 Substituted Penaresidin Core (Beauhaire and Ducrot, 1998)

11 Substituted Penaresidin Core (Ducrot, 1999)

12 Penaresidin A (Lin, 1999)

13 Penaresidin B (Yoda, 2003)

14 Penaresidin Structure-Reactivity Relationship (Kobayashi, 2007)

15 Penaresidin A (Raghavan, 2010)

16 Penaresidin A (Reddy, 2014)

17 Penaresidin B (Liu, 2015)

18 Penaresidin B (Yakura, 2018)

19 Penaresidin B (DuBois, 2020)

20 Penaresidin Analogues (Bodnár, 2021)



Publication History

Received: 13 October 2023

Accepted after revision: 05 December 2023

Article published online:
28 March 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kobayashi J, Cheng J.-F, Ishibashi M, Wälchli MR, Yamamura S, Ohizumi Y. J. Chem. Soc., Perkin Trans. 1 1991; 1135
  • 2 Fujiwara T, Yakura T. Heterocycles 2020; 101: 383
  • 3 Karlsson K.-A. Chem. Phys. Lipids 1970; 5: 6
  • 4 Karlsson K.-A. Lipids 1970; 5: 878
  • 5 Lin D, Wang W, Qiu F, Li Y, Yu X, Lin B, Chen Y, Lei C, Ma Y, Zeng J, Zhou J. Nanfang Yike Daxue Xuebao 2019; 39: 1409 DOI: 10.12122/j.issn.1673-4254.2019.12.04.
  • 6 Pruett ST, Bushnev A, Hagedorn K, Adiga M, Haynes CA, Sullards MC, Liotta DC, Merrill AH. J. Lipid Res. 2008; 49: 1621
  • 7 Qiu F, Su B, Li Z, Chen W, Cao L, Chen F, Liu D, He J, Lin N. Cancer Manage. Res. 2019; 11: 6151 DOI: 10.2147/CMAR.S205052.
  • 8 Lin G, Liu D. Heterocycles 1998; 47: 337
  • 9 Ohshita K, Ishiyama H, Takahashi Y, Ito J, Mikami Y, Kobayashi J. Bioorg. Med. Chem. 2007; 15: 4910
  • 10 Takikawa H, Maeda T, Seki M, Koshino H, Mori K. J. Chem. Soc., Perkin Trans. 1 1997; 97
  • 11 Alvi KA, Jaspars M, Crews P, Strulovici B, Oto E. Bioorg. Med. Chem. Lett. 1994; 4: 2447
  • 12 Yajima A, Takikawa H, Mori K. Liebigs Ann. 1996; 1996: 1083
  • 13 Fuhshuku K, Hongo N, Tashiro T, Masuda Y, Nakagawa R, Seino K, Taniguchi M, Mori K. Bioorg. Med. Chem. 2008; 16: 950
  • 14 Raschmanová J. Š, Martinková M, Pilátová MB, Nosálová N, Kuchár J, Bodnár G. Carbohydr. Res. 2021; 508: 108419
  • 15 Garner P, Park JM, Malecki E. J. Org. Chem. 1988; 53: 4395
  • 16 Yoda H, Oguchi T, Takabe K. Tetrahedron Lett. 1997; 38: 3283
  • 17 Ainsua Martinez S, Gillard M, Chany A.-C, Burton JW. Tetrahedron 2018; 74: 5012
  • 18 Raghavan S, Krishnaiah V. J. Org. Chem. 2010; 75: 748
  • 19 Hiraki T, Yamagiwa Y, Kamikawa T. Tetrahedron Lett. 1995; 36: 4841
  • 20 Takikawa H, Maeda T, Mori K. Tetrahedron Lett. 1995; 36: 7689
  • 21 Brown CA, Yamashita A. J. Am. Chem. Soc. 1975; 97: 891
  • 22 Kobayashi J, Tsuda M, Cheng J, Ishibashi M, Takikawa H, Mori K. Tetrahedron Lett. 1996; 37: 6775
  • 23 Grotjahn DB, Larsen CR, Gustafson JL, Nair R, Sharma A. J. Am. Chem. Soc. 2007; 129: 9592
  • 24 Knapp S, Dong Y. Tetrahedron Lett. 1997; 38: 3813
  • 25 Beauhaire J, Ducrot P.-H. Synth. Commun. 1998; 28: 2443
  • 26 Beauhaire J, Ducrot P.-H. C. R. Acad. Sci., Ser. IIc: Chim. 1999; 2: 477
  • 27 Mori K. Tetrahedron 1976; 32: 1101
  • 28 Ittah Y, Sasson Y, Shahak I, Tsaroom S, Blum J. J. Org. Chem. 1978; 43: 4271
  • 29 Liu D.-G, Lin G.-Q. Tetrahedron Lett. 1999; 40: 337
  • 30 Jager V. Tetrahedron 1991; 47: 2195
  • 31 Yoda H, Uemura T, Takabe K. Tetrahedron Lett. 2003; 44: 977
  • 32 Lay L, Nicotra F, Paganini A, Pangrazio C, Panza L. Tetrahedron Lett. 1993; 34: 4555
  • 33 García Ruano JL, Alcudia A, del Prado M, Barros D, Maestro MC, Fernández I. J. Org. Chem. 2000; 65: 2856
  • 34 Cossy J, BouzBouz S, Hoveyda AH. J. Organomet. Chem. 2001; 624: 327
  • 35 Reddy BV. S, Kishore Ch, Reddy AS. Tetrahedron Lett. 2014; 55: 49
  • 36 Luche JL. J. Am. Chem. Soc. 1978; 100: 2226
  • 37 Jung ME, D’Amico DC. J. Am. Chem. Soc. 1993; 115: 12208
  • 38 Ding F, William R, Kock SM, Leow ML, Liu X.-W. Chem. Commun. 2015; 51: 4639
  • 39 Fujiwara T, Hashimoto K, Umeda M, Murayama S, Ohno Y, Liu B, Nambu H, Yakura T. Tetrahedron 2018; 74: 4578
  • 40 Fujiwara T, Liu B, Niu W, Hashimoto K, Nambu H, Yakura T. Chem. Pharm. Bull. 2016; 64: 179
  • 41 Betz KN, Chiappini ND, Du Bois J. Org. Lett. 2020; 22: 1687