Synthesis 2024; 56(03): 368-388
DOI: 10.1055/s-0042-1751492
short review

Recent Advancements in Typical Friedel–Crafts Alkylation Reactions Focused on Targeting Arene Nucleophiles

Sanjay Singh
,
Chinmoy K. Hazra
C. K. Hazra thanks Science and Engineering Research Board (SERB), India (SRG/2019/000213), Council of Scientific and Industrial Research (CSIR) (02/0417/21-EMR-II), Equipment Matching Grant, Industrial Research and Development Unit (IRD), Indian Institute of Technology Delhi (MI02098G), Faculty Interdisciplinary Research Project (FIRP) scheme of the Industrial Research and Development Unit (IRD), Indian Institute of Technology Delhi (MI02383G) for financial support. S. Singh acknowledges Council of Scientific and Industrial Research/University Grants Commission (CSIR/UGC) (MHRD), India, for the senior research fellowship.


Dedicated to Professor Frances Arnold on the occasion of her 66th birthday.

Abstract

This review delves into recent advances and significant breakthroughs in the field of the catalytic Friedel–Crafts alkylation of targeted arenes or heteroarenes. Though a few earlier literatures are referenced, the main emphasis of this review focuses on the literature mainly published between 2015 and March 2023.

1 Introduction

2 History and Background

3 Alcohols as Alkylating Agents

4 Aldehydes and Ketones as Alkylating Agents

5 Alkyl Fluorides as Alkylating Agents

6 Epoxides as Alkylating Agents

7 Cyclopropanes as Alkylating Agents

8 Conclusion and Outlook



Publication History

Received: 30 June 2023

Accepted after revision: 23 August 2023

Article published online:
02 October 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Friedel C, Crafts JM. C. R. Hebd. Seances Acad. Sci. 1877; 84: 1392
    • 1b Friedel C, Crafts JM. J. Chem. Soc. 1877; 32: 725
    • 2a Olah GA, Krishnamurti R, Prakash GK. S. In Comprehensive Organic Synthesis, Vol. 3. Trost BM, Fleming I. Pergamon; Oxford: 1991
    • 2b Badart MP, Hawkins BC. Synthesis 2021; 53: 1683
  • 3 Rueping M, Nachtsheim BJ. Beilstein J. Org. Chem. 2010; 6: 6
  • 4 Olah GA. Friedel–Crafts and Related Reactions, Vol. 2. Wiley-Interscience; New York: 1964
    • 5a Calloway NO. Chem. Rev. 1935; 17: 327
    • 5b Fairbrother F. Trans. Faraday Soc. 1941; 37: 763
    • 6a Klipstein KH. Ind. Eng. Chem. 1926; 18: 1328
    • 6b Meerwein H. Justus Liebigs Ann. Chem. 1927; 455: 227
    • 7a Olah GA, Farooq O, Farnina SM. F, Olah JA. J. Am. Chem. Soc. 1988; 110: 2560
    • 7b Olah GA. J. Org. Chem. 2001; 66: 5943
  • 8 Evano G, Theunissen C. Angew. Chem. Int. Ed. 2019; 58: 7558
  • 9 Olah GA, Kobayashi S, Tashiro M. J. Am. Chem. Soc. 1972; 94: 7448
  • 10 Tang R.-J, Milcent T, Crousse B. J. Org. Chem. 2018; 83: 14001
  • 11 Kischel J, Jovel I, Mertins K, Zapf A, Beller M. Org. Lett. 2006; 8: 19
  • 12 Schafer G, Bode JW. Angew. Chem. Int. Ed. 2011; 50: 10913
    • 13a Chen D, Yu L, Wang PG. Tetrahedron Lett. 1996; 37: 4467
    • 13b Qiao C, Liu X, Fu H, Yang H, Zhang Z, He L. Chem. Asian J. 2018; 13: 2664
    • 13c Grigolo TA, de Campos SD, Manarin F, Botteselle GV, Brandão P, Amaral AA, de Campos EA. Dalton Trans. 2017; 46: 15698
    • 13d Chandrasekhar S, Khatun S, Rajesh G, Reddy CR. Tetrahedron Lett. 2009; 50: 6693
    • 13e Babu BM, Thakur PB, Rao NN, Kumar GS, Meshram HM. Tetrahedron Lett. 2014; 55: 1868
    • 13f Lv F, Xiao J, Xiang J, Guo F, Tang Z.-L, Han L.-B. J. Org. Chem. 2021; 86: 3081
  • 14 Olah GA. My Search for Carbocations and Their Role in Chemistry. In Nobel Lectures, Chemistry 1991–1995. Malmström BG. World Scientific Publishing Co; Singapore: 1997
    • 15a Rueping M, Koenigs RM, Atodiresei I. Chem. Soc. Rev. 2011; 40: 4539
    • 15b Cheon CH, Yamamoto H. Chem. Commun. 2011; 47: 3043
    • 15c Rueping M, Nachtsheim BJ, Ieawsuwan W, Atodiresei I. Angew. Chem. Int. Ed. 2011; 50: 6706
    • 16a Schenker S, Zamfir A, Freund M, Tsogoeva SB. Eur. J. Org. Chem. 2011; 2209
    • 16b Lu H.-H, Tan F, Xiao W.-J. Curr. Org. Chem. 2011; 15: 4022
    • 17a Eom D, Park S, Park Y, Ryu T, Lee PH. Org. Lett. 2012; 14: 5392
    • 17b Smith CD, Rosocha G, Mui L, Batey RA. J. Org. Chem. 2010; 75: 4716
    • 17c Wang G.-W, Wang H.-L, Capretto DA, Han Q, Hu R.-B, Yang S.-D. Tetrahedron 2012; 68: 5216
    • 17d Guo Y, Fan L, Wang J, Yang C, Qu H, Xu H. Tetrahedron 2013; 69: 774
    • 17e Choi Y, Kim BT, Heo J.-N. J. Org. Chem. 2012; 77: 8762
    • 17f Liebert C, Brinks MK, Capacci AG, Fleming MJ, Lautens M. Org. Lett. 2011; 13: 3000
    • 17g Li G.-X, Qu J. Chem. Commun. 2010; 46: 2653
    • 17h Medeiros M, Narayan RS, McDougal NT, Schaus SE, Porco JA. Jr. Org. Lett. 2010; 12: 3222
    • 18a Huo C, Xu X, Jia X, Wang X, An J, Sun C. Tetrahedron 2012; 68: 190
    • 18b Huo C, Xu X, An J, Jia X, Wang X, Wang C. J. Org. Chem. 2012; 77: 8310
    • 18c Smith AG, Johnson JS. Org. Lett. 2010; 12: 1784
    • 18d Lai P.-S, Dubland JA, Sarwar MG, Chudzinski MG, Taylor MS. Tetrahedron 2011; 67: 7586
    • 18e Ghosh S, Kinthada LK, Bhunia S, Bisai A. Chem. Commun. 2012; 48: 10132
    • 18f Devoust M, Kitching JA, Fleming MJ, Lautens M. Chem. Eur. J. 2010; 16: 50
    • 19a Mondal S, Panda G. RSC Adv. 2014; 4: 28317
    • 19b Vodnala N, Singh S, Hazra CK. J. Org. Chem. 2022; 87: 10044
  • 20 Dryzhakov M, Richmond E, Moran J. Synthesis 2016; 48: 935
  • 21 McCubbin JA, Krokhin OV. Tetrahedron Lett. 2010; 51: 2447
  • 22 Teranishi S, Kurahashi T, Matsubara S. Synlett 2013; 24: 2148
  • 23 Chen K, Chen HJ, Wong J, Yang J, Pullarkat SA. ChemCatChem 2013; 5: 3882
    • 24a Chatterjee PN, Roy S. Tetrahedron 2012; 68: 3776
    • 24b Nishibayashi Y, Inada Y, Yoshikawa M, Hidai M, Uemura S. Angew. Chem. Int. Ed. 2003; 42: 1495
  • 25 Kennedy-Smith JJ, Young LA, Toste FD. Org. Lett. 2004; 6: 1325
  • 26 Gohain M, Marais C, Bezuidenhoudt BC. B. Tetrahedron Lett. 2012; 53: 4704
  • 27 Ponra S, Gohain M, van Tonder JH, Bezuidenhoudt BC. B. Synlett 2015; 26: 745
  • 28 Yamauchi T, Hattori K, Mizutaki S, Tamaki K, Uemura S. Bull. Chem. Soc. Jpn. 1986; 59: 3617
  • 29 Tsuchimoto T, Tobita K, Hiyama T, Fukuzawa S.-I. J. Org. Chem. 1997; 62: 6997
  • 30 Iovel I, Mertins K, Kischel J, Zapf A, Beller M. Angew. Chem. Int. Ed. 2005; 44: 3913
  • 31 Rueping M, Nachtsheim BJ, Ieawsuwan W. Adv. Synth. Catal. 2006; 348: 1033
  • 32 Mertins K, Iovel I, Kischel J, Zapf A, Beller M. Adv. Synth. Catal. 2006; 348: 691
    • 33a Anschütz R, Beckerhoff H. Justus Liebigs Ann. Chem. 1903; 327: 218
    • 33b Oesper PF, Smyth CP, Kharasch MS. J. Am. Chem. Soc. 1942; 64: 937
    • 33c Ipatieff VN, Pines H, Friedman BS. J. Am. Chem. Soc. 1938; 60: 2731
    • 34a McKenna JF, Sowa FJ. J. Am. Chem. Soc. 1938; 60: 124
    • 34b Hassner A, Fibiger R, Andisik D. J. Org. Chem. 1984; 49: 4237
    • 34c Ouertani M, Collin J, Kagan HB. Tetrahedron 1985; 41: 3689
  • 35 Gauthier JY, Bourdon F, Young RN. Tetrahedron Lett. 1986; 27: 15
  • 36 Bandini M, Tragni M. Org. Biomol. Chem. 2009; 7: 1501
  • 37 Cozzi PG, Benfatti F. Angew. Chem. Int. Ed. 2010; 49: 256
  • 38 Bandini M. Angew. Chem. Int. Ed. 2011; 50: 994
  • 39 Emer E, Sinisi R, Capdevila MG, Petruzziello D, De Vincentiis F, Cozzi PG. Eur. J. Org. Chem. 2011; 647
  • 40 Sundararaju B, Achard M, Bruneau C. Chem. Soc. Rev. 2012; 41: 4467
  • 41 Kumar R, Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 1121
  • 42 Naredla RR, Klumpp DA. Chem. Rev. 2013; 113: 6905
  • 43 Mo X, Yakiwchuk J, Dansereau J, McCubbin JA, Hall DG. J. Am. Chem. Soc. 2015; 137: 9694
  • 44 McClelland RA, Mathinavan N, Steenken S. J. Am. Chem. Soc. 1990; 112: 4857
    • 45a Zhang S, Lebœuf D, Moran J. Chem. Eur. J. 2020; 26: 9883
    • 45b Ang HT, Rygus JP. G, Hall DG. Org. Biomol. Chem. 2019; 17: 6007
    • 46a Aynetdinova D, Callens MC, Hicks HB, Poh CY. X, Shennan BD. A, Boyd AM, Lim ZH, Leitch JA, Dixon DJ. Chem. Soc. Rev. 2021; 50: 5517
    • 46b Liu MX, Qiu ZH, Tan LD, Rashid RT, Chu S, Cen YN, Luo ZL, Khaliullin RZ, Mi ZT, Li CJ. ACS Catal. 2020; 10: 6248
  • 47 He T, Klare HF. T, Oestreich M. J. Am. Chem. Soc. 2023; 145: 3795
  • 48 Niggemann M, Meel MJ. Angew. Chem. Int. Ed. 2010; 49: 3684
  • 49 Chen L, Yin X.-P, Wang C.-H, Zhou J. Org. Biomol. Chem. 2014; 12: 6033
  • 52 Feng H, Patel M, Luo F, Flach C, Mendelsohn R, Garfunkel E, He H, Szostak M. J. Am. Chem. Soc. 2015; 137: 14473
  • 53 Georgy M, Boucard V, Campagne J.-M. J. Am. Chem. Soc. 2005; 127: 14180
  • 54 Matsuzawa H, Miyake Y, Nishibayashi Y. Angew. Chem. Int. Ed. 2007; 46: 6488
  • 55 Dryzhakov M, Hellal M, Wolf E, Falk FC, Moran J. J. Am. Chem. Soc. 2015; 137: 9555
  • 56 Vuković VD, Richmond E, Wolf E, Moran J. Angew. Chem. Int. Ed. 2017; 56: 3085
    • 57a Noël F, Vuković VD, Yi J, Richmond E, Kravljanac P, Moran J. J. Org. Chem. 2019; 84: 15926
    • 57b Qin Q, Xie Y, Floreancig PE. Chem. Sci. 2018; 9: 8528
  • 58 Zheng Y, Fang X, Deng W.-H, Zhao B, Liao R.-Z, Xie Y. Org. Chem. Front. 2022; 9: 4277
  • 59 Yadav N, Khan J, Tyagi A, Singh S, Hazra CK. J. Org. Chem. 2022; 87: 6886
  • 60 Sharma P, Taneja N, Singh P, Hazra CK. Chem. Eur. J. 2023; 29: e202202956
  • 61 Jefferies LR, Cook SP. Org. Lett. 2014; 16: 2026
  • 62 Oakley JV, Stanley TJ, Jesse KA, Melanese AK, Alvarez AA, Prince AL, Cain SE, Wenzel AG, Iafe RG. Eur. J. Org. Chem. 2019; 7063
  • 63 Pan A, Chojnacka M, Crowley R, Göttemann L, Haines BE, Kou KG. M. Chem. Sci. 2022; 13: 3539
  • 64 Ling Y, An D, Zhou Y, Rao W. Org. Lett. 2019; 21: 3396
  • 65 Xiao J, Wen H, Wang L, Xu L, Hao Z, Shao C.-L, Wang C.-Y. Green Chem. 2016; 18: 1032
  • 66 An D, Miao X, Ling X, Chen X, Rao W. Adv. Synth. Catal. 2020; 362: 1514
    • 67a D’yakonov VA, Trapeznikova OA, de Meijere A, Dzhemilev UM. Chem. Rev. 2014; 114: 5775
    • 67b Xu P.-W, Yu J.-S, Chen C, Cao Z.-Y, Zhou F, Zhou J. ACS Catal. 2019; 9: 1820
    • 68a Singh TP, Singh OM. Med. Chem. 2018; 18: 9
    • 68b Zhai Y.-J, Huo G.-M, Zhang Q, Li D, Wang D.-C, Qi J.-Z, Han W.-B, Gao J.-M. J. Nat. Prod. 2020; 83: 1592
  • 69 Zhang P, Tsuji N, Ouyang J, List B. J. Am. Chem. Soc. 2021; 143: 675
  • 70 Sun P, Jia Z.-H, Tang L, Zheng H, Li Z.-R, Chen L.-Y, Li Y. Org. Biomol. Chem. 2022; 20: 1916
  • 71 Wang X.-W, Huang W.-J, Wang H, Wu B, Zhou Y.-G. Org. Lett. 2022; 24: 1727
  • 72 Zhang W, Song R, Yang D, Lv J. J. Org. Chem. 2022; 87: 2853
  • 73 Johannsen M. Chem. Commun. 1999; 2233
  • 74 Austin JF, MacMillan DW. C. J. Am. Chem. Soc. 2002; 124: 1172
  • 75 Saha S, Alamsetti SK, Schneider C. Chem. Commun. 2015; 51: 1461
  • 76 Palmieri A, Petrini M. Synthesis 2019; 51: 829
  • 77 Kshatriya R, Jejurkar VP, Saha S. Eur. J. Org. Chem. 2019; 3818
  • 78 Qi S, Liu C.-Y, Ding J.-Y, Han F.-S. Chem. Commun. 2014; 50: 8605
  • 79 Deng X.-f, Wang Y.-w, Zhang S.-q, Li L, Li G.-x, Zhao G, Tang Z. Chem. Commun. 2020; 56: 2499
  • 80 Uchikura T, Sánchez-Sordo I, Yoshimura T, Makino Y, Osakabe H, Akiyama T. J. Org. Chem. 2023; 88: 7774
  • 81 Zhang H.-H, Wang C.-S, Li C, Mei G.-J, Li Y, Shi F. Angew. Chem. Int. Ed. 2017; 56: 116
  • 82 Zhu W.-R, Su Q, Deng X.-Y, Liu J.-S, Zhong T, Meng S.-S, Yi J.-T, Weng J, Lu G. Chem. Sci. 2022; 13: 170
  • 83 Ma C, Jiang F, Sheng F.-T, Jiao Y, Mei G.-J, Shi F. Angew. Chem. Int. Ed. 2019; 58: 3014
  • 85 Montesinos-Magraner M, Vila C, Blay G, Pedro JR. Synthesis 2016; 48: 2151
  • 86 Kobayashi S, Nagayama S. J. Am. Chem. Soc. 1996; 118: 8977
  • 87 Kobayashi S, Nagayama S. J. Am. Chem. Soc. 1998; 120: 2985
  • 88 Nagayama S, Kobayashi S. Angew. Chem. Int. Ed. 2000; 39: 567
    • 89a Okuhara T. Chem. Rev. 2002; 102: 3641
    • 89b Melero JA, Iglesias J, Morales G. Green Chem. 2009; 11: 1285
    • 89c Borges ME, Diaz L. Renewable Sustainable Energy Rev. 2012; 16: 2839
    • 89d Su F, Guo YH. Green Chem. 2014; 16: 2934
    • 89e Liu F, Huang K, Zheng A, Xiao F.-S, Dai S. ACS Catal. 2018; 8: 372
    • 90a Fukuyama T, Totoki T, Ryu I. Green Chem. 2014; 16: 2042
    • 90b Gutmann B, Cantillo D, Kappe CO. Angew. Chem. Int. Ed. 2015; 54: 6688
    • 90c Gemoets HP. L, Su Y, Shang M, Hessel V, Luque R, Noel T. Chem. Soc. Rev. 2016; 45: 83
    • 91a Mantri K, Komura K, Kubota Y, Sugi Y. J. Mol. Catal. A: Chem. 2005; 236: 168
    • 91b Sun Y, Prins R. Appl. Catal. A. 2008; 336: 11
    • 91c Wang F, Ueda W. Chem. Commun. 2008; 3196
    • 91d Pineda A, Balu AM, Campelo JM, Luque R, Romero AA, Serrano-Ruiz JC. Catal. Today 2012; 187: 65
    • 91e Yan X, Liu B, Huang J, Wu Y, Chen H, Xi H. Ind. Eng. Chem. Res. 2019; 58: 2924
  • 92 Sun Q, Hu K, Leng K, Yi X, Aguila B, Sun Y, Zheng A, Meng X, Ma S, Xiao F.-S. J. Mater. Chem. A 2018; 6: 18712
  • 93 Zhang Q, Yuan H.-Y, Fukaya N, Yasuda H, Choi J.-C. Green Chem. 2017; 19: 5614
  • 94 Tang S, Baker GA, Zhao H. Chem. Soc. Rev. 2012; 41: 4030
  • 95 Amarasekara AS. Chem. Rev. 2016; 116: 6133
  • 96 Kasakado T, Hyodo M, Furuta A, Kamardine A, Ryu I, Fukuyama T. J. Chin. Chem. Soc. 2020; 67: 2253
  • 97 Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
  • 98 Masuda K, Okamoto Y, Onozawa S, Koumura N, Kobayashi S. RSC Adv. 2021; 11: 24424
  • 99 Wu F, Zhao Y, Wang Y, Xu Y, Tang M, Wang Z, Han B, Liu Z. Green Chem. 2022; 24: 3137
  • 100 Wilsdorf M, Leichnitz D, Reissig HU. Org. Lett. 2013; 15: 2494
  • 101 Wang X, Wang Y, Du DM, Xu J. J. Mol. Catal. A: Chem. 2006; 255: 31
  • 102 Podder S, Choudhury J, Roy UK, Roy S. J. Org. Chem. 2007; 72: 3100
  • 103 Genovese S, Epifano F, Pelucchini C, Curini M. Eur. J. Org. Chem. 2009; 1132
  • 104 Surya Prakash GK, Panja C, Shakhmin A, Shah E, Mathew T, Olah GA. J. Org. Chem. 2009; 74: 8659
  • 105 Surya Prakash GK, Fogassy G, Olah GA. Catal. Lett. 2010; 138: 155
  • 106 Wati FA, Santoso M, Moussa Z, Fatmawati S, Fadlana A, Judeh ZM. A. RSC Adv. 2021; 11: 25381
  • 107 Shiri M, Zolfigol MA, Kruger HG, Tanbakouchian Z. Chem. Rev. 2010; 110: 2250
  • 108 Yadav JS, Reddy BV. S, Murthy CV. S. R, Kumar GM, Madan C. Synthesis 2001; 783
  • 109 Nagarajan R, Perumal PT. Tetrahedron 2002; 58: 1229
  • 110 Gupta G, Chaudhari G, Tomar P, Gaikwad Y, Azad R, Pandya G, Waghulde G, Patil K. Eur. J. Chem. 2012; 3: 475
  • 111 Beltrá J, Gimeno MC, Herrera RP. Beilstein J. Org. Chem. 2014; 10: 2206
  • 112 Veisi H, Maleki B, Eshbala FH, Veisi H, Masti R, Ashrafi SS, Baghayeri M. RSC Adv. 2014; 4: 30683
  • 113 Saini P, Kumari P, Hazra S, Elias AJ. Chem. Asian J. 2019; 14: 4154
  • 114 Salem ZM, Saway J, Badillo JJ. Org. Lett. 2019; 21: 8528
  • 115 Galathri EM, Terlizzi LD, Fagnoni M, Protti S, Kokotos CG. Org. Biomol. Chem. 2023; 21: 365
  • 116 Singh S, Mahato R, Sharma P, Yadav N, Vodnala N, Hazra CK. Chem. Eur. J. 2022; 28: e202104545
  • 117 Stephan DW. J. Am. Chem. Soc. 2021; 143: 20002
  • 118 Khan J, Tyagi A, Yadav N, Mahato R, Hazra CK. J. Org. Chem. 2021; 86: 17833
    • 119a Khan J, Tyagi A, Yadav N, Mahato R, Hazra CK. J. Org. Chem. 2022; 87: 11097
    • 119b Das AJ, Das SK. J. Org. Chem. 2022; 87: 5085
  • 120 Singh S, Sankalan S, Tiwari V, Karmakar T, Hazra CK. Chem. Eur. J. 2023; 29: e202300180
  • 121 Singh S, Mondal S, Vodnala N, Hazra CK. Green Chem. 2023; 25: 1014
  • 122 Roberts RM, Khalaf AA. Friedel–Crafts Alkylation Chemistry: A Century of Discovery . Marcel Dekker; New York: 1984
  • 123 Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Wiley-VCH; Weinheim: 2004
  • 124 Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
  • 125 Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 126a Reichenbächer K, Süss HI, Hulliger J. Chem. Soc. Rev. 2005; 34: 22
    • 126b Hiyama T. Organofluorine Compounds: Chemistry and Applications. Springer; Berlin: 2000
  • 127 O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
  • 128 Stahl T, Klare HF. T, Oestreich M. ACS Catal. 2013; 3: 1578
  • 129 Pauling L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, 3rd ed. Cornell University Press; Ithaca: 1960
  • 130 Smith DW. J. Phys. Chem. A 1998; 102: 7086
  • 131 Scott VJ, Celenligil-Cetin R, Ozerov OV. J. Am. Chem. Soc. 2005; 127: 2852
  • 132 Douvris C, Nagaraja CM, Chen C.-H, Foxman BM, Ozerov OV. J. Am. Chem. Soc. 2010; 132: 4946
  • 133 Gu W, Haneline MR, Douvris C, Ozerov OV. J. Am. Chem. Soc. 2009; 131: 11203
    • 134a Caputo CB, Hounjet LJ, Dobrovetsky R, Stephan DW. Science 2013; 341: 1374
    • 134b Ahrens M, Scholz G, Braun T, Kemnitz E. Angew. Chem. Int. Ed. 2013; 52: 5328
    • 135a Olah GA, Kuhn S. J. Org. Chem. 1964; 29: 2317
    • 135b Olah GA, Yamato T, Hashimoto T, Shih JG, Trivedi N, Singh BP, Piteau M, Olah JA. J. Am. Chem. Soc. 1987; 109: 3708
  • 136 Allemann O, Duttwyler S, Romanato P, Baldridge KK, Siegel JS. Science 2011; 332: 574
  • 137 Allemann O, Baldridge KK, Siegel JS. Org. Chem. Front. 2015; 2: 1018
  • 138 Douvris C, Ozerov OV. Science 2008; 321: 1188
  • 139 Lühmann N, Panisch R, Müller T. Appl. Organomet. Chem. 2010; 24: 533
  • 140 For review of C–F bond activation by silylium ions, see: Meier G, Braun T. Angew. Chem. Int. Ed. 2009; 48: 1546
    • 141a Müller T. Silylium Ions. In Structure and Bonding. In Functional Molecular Silicon Compounds I. Scheschkewitz D. Springer; Berlin: 2014
    • 141b Schulz A, Villinger A. Angew. Chem. Int. Ed. 2012; 51: 4526
    • 141c Klare HF. T, Oestreich M. Dalton Trans. 2010; 39: 9176
    • 142a Panisch R, Bolte M, Müller T. J. Am. Chem. Soc. 2006; 128: 9676
    • 142b Douvris C, Stoyanov ES, Tham FS, Reed CA. Chem. Commun. 2007; 1145
    • 143a Klare HF. T. ACS Catal. 2017; 7: 6999
    • 143b Popov S, Shao B, Bagdasarian AL, Benton TR, Zou L, Yang Z, Houk KN, Nelson HM. Science 2018; 361: 381
    • 144a Champagne PA, Pomarole J, Thérien M.-È, Benhassine Y, Beaulieu S, Legault CY, Paquin J.-F. Org. Lett. 2013; 15: 2210
    • 144b Champagne PA, Saint-Martin A, Drouin M, Paquin J.-F. Beilstein J. Org. Chem. 2013; 9: 2451
    • 144c Champagne PA, Drouin M, Legault CY, Audubert C, Paquin J.-F. J. Fluorine Chem. 2015; 171: 113
    • 144d For a recent review on the topic, see: Champagne PA, Desroches J, Paquin J.-F. Synthesis 2015; 47: 306
  • 145 Champagne PA, Benhassine Y, Desroches J, Paquin J.-F. Angew. Chem. Int. Ed. 2014; 53: 13835
  • 146 Dryzhakov M, Moran J. ACS Catal. 2016; 6: 3670
  • 147 Akram MO, Tidwell JR, Dutton JL, Martin CD. Angew. Chem. Int. Ed. 2022; 61: e202212073
  • 148 Zhu J, Pérez M, Caputo CB, Stephan DW. Angew. Chem. Int. Ed. 2016; 55: 1417
  • 149 Omann L, Königs CD. F, Klare HF. T, Oestreich M. Acc. Chem. Res. 2017; 50: 1258
  • 150 Forster F, Metsänen TT, Irran E, Hrobárik P, Oestreich M. J. Am. Chem. Soc. 2017; 139: 16334
  • 151 Zhu J, Pérez M, Stephan DW. Angew. Chem. Int. Ed. 2016; 55: 8448
  • 152 Nielsen MM, Qiao Y, Wang Y, Pedersen CM. Eur. J. Org. Chem. 2020; 140
  • 153 Nielsen MM, Stougaard BA, Bols M, Glibstrup E, Pedersen CM. Eur. J. Org. Chem. 2017; 1281
    • 154a Suzuki N, Fujita T, Ichikawa J. Org. Lett. 2015; 17: 4984
    • 154b Suzuki N, Fujita T, Amsharov KY, Ichikawa J. Chem. Commun. 2016; 52: 12948
    • 155a Ichikawa J, Yokota M, Kudo T, Umezaki S. Angew. Chem. Int. Ed. 2008; 47: 4870
    • 155b Fuchibe K, Takao G, Takahashi H, Ijima S, Ichikawa J. Bull. Chem. Soc. Jpn. 2019; 92: 2019
  • 156 Fujita T, Morioka R, Fukuda T, Suzuki N, Ichikawa J. Chem. Commun. 2021; 57: 8500
  • 157 Bamford KL, Chitnis SS, Qu Z.-W, Stephan DW. Chem. Eur. J. 2018; 24: 16014
  • 158 Guo J, Bamford KL, Stephan DW. Org. Biomol. Chem. 2019; 17: 5258
  • 159 Willcox DR, Nichol GS, Thomas SP. ACS Catal. 2021; 11: 3190
  • 160 Hemelaere R, Champagne PA, Desroches J, Paquin J.-F. J. Fluorine Chem. 2016; 190: 1
  • 161 Hamel J.-D, Beaudoin M, Cloutier M, Paquin J.-F. Synlett 2017; 28: 2823
  • 162 Wang J, Ogawa Y, Shibata N. iScience 2019; 17: 132
  • 163 Weissermel K, Arpe H.-J. Industrial Organic Chemistry, 4th ed. Wiley-VCH; Weinheim: 2008
  • 164 Kotsuki H, Hayashida K, Shimanouchi T, Nishizawa H. J. Org. Chem. 1996; 61: 984
  • 165 Bandini M, Cozzi PG, Melchiorre P, Umani-Ronchi A. J. Org. Chem. 2002; 67: 5386
  • 166 Hosseini-Sarvari M, Parhizgar G. Green Chem. Lett. Rev. 2012; 5: 439
  • 167 Yadav JS, Reddy BV. S, Abraham S, Sabitha G. Synlett 2002; 1550
    • 168a Gorzynski Smith J. Synthesis 1984; 629
    • 168b Lauret C. Tetrahedron: Asymmetry 2001; 12: 2359
    • 168c Schneider C. Synthesis 2006; 3919
    • 168d Olofsson B, Somfai P. Aziridines and Epoxides in Asymmetric Synthesis, Chap. 9. Yudin AK. Wiley-VCH; Weinheim: 2006: 315
    • 168e Das B, Damodar K. In Heterocycles in Natural Product Synthesis, Vol. 2. Majumdar KC, Chattopadhyay SK. Wiley-VCH; Weinheim: 2011
  • 169 Bandini M, Melloni A, Umani-Ronchi A. Angew. Chem. Int. Ed. 2004; 43: 550
  • 170 Taylor SK. Org. Prep. Proced. Int. 1992; 24: 245
  • 171 Kobayashi Y, Harayama T. Org. Lett. 2009; 11: 1603
  • 172 Naduthambi D, Bhor S, Elbaum MB, Zondlo NJ. Org. Lett. 2013; 15: 4892
  • 173 Ahmed N, Pathe GK, Jheeta S. RSC Adv. 2015; 5: 63095
  • 174 Das SK. Asian J. Org. Chem. 2017; 6: 243
  • 175 Wei L, Zhang J. Chem. Commun. 2012; 48: 2636
  • 176 Wei L, Liu L, Zhang J. Org. Biomol. Chem. 2014; 12: 6869
  • 177 Acocella MR, Mauro M, Guerra G. ChemSusChem 2014; 7: 3279
    • 178a Wang L, Su Y, Xu X, Zhang W. Eur. J. Org. Chem. 2012; 6606
    • 178b Wang L, Li Z, Lu L, Zhang W. Tetrahedron 2012; 68: 1483
    • 178c Chouhan M, Senwar KR, Sharma R, Grover V, Nair VA. Green Chem. 2011; 13: 2553
    • 178d Inoue M, Furuyama H, Sakazaki H, Hirama M. Org. Lett. 2001; 3: 2863
    • 179a Hajra S, Maity S, Maity R. Org. Lett. 2015; 17: 3430
    • 179b Hajra S, Maity S, Roy S, Maity R, Samanta S. Eur. J. Org. Chem. 2019; 969
  • 180 Hajra S, Maity S, Roy S. Adv. Synth. Catal. 2016; 358: 2300
  • 181 Ling J, Lam SK, Lo B, Lam B, Wong W.-T, Sun J, Chena G, Chiu P. Org. Chem. Front. 2016; 3: 457
    • 182a Weber M, Weber M, Kleine-Boymann M. Phenol . In Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2004
    • 182b Visioli F, Poli A, Galli C. Med. Res. Rev. 2002; 22: 65
  • 183 Nemoto T, Hamada Y. Synlett 2016; 27: 2301
  • 184 Kamitanaka T, Morimoto K, Tsuboshima K, Koseki D, Takamuro H, Dohi T, Kita Y. Angew. Chem. Int. Ed. 2016; 55: 15535
  • 185 Zhu G, Li L, Bao G, Sun W, Huang L, Hong L, Wang R. ACS Catal. 2018; 8: 1810
  • 186 Zhu G, Bao G, Li Y, Sun W, Li J, Hong L, Wang R. Angew. Chem. Int. Ed. 2017; 56: 5332
    • 187a Zhang S, Vayer M, Noël F, Vuković VD, Golushko A, Rezajooei N, Rowley CN, Lebœuf D, Moran J. Chem 2021; 7: 3425
    • 187b Tyagi A, Khan J, Yadav N, Mahato R, Hazra CK. J. Org. Chem. 2022; 87: 10229
  • 188 Müller C, Horký F, Vayer M, Golushko A, Lebœuf D, Moran J. Chem. Sci. 2023; 14: 2983
    • 189a Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
    • 189b Yu M, Pagenkopf BL. Tetrahedron 2005; 61: 321
    • 189c Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
    • 189d Lebold TP, Kerr MA. Pure Appl. Chem. 2010; 82: 1797
    • 189e Mel’nikov MY, Budynina EM, Ivanova OA, Trushkov IV. Mendeleev Commun. 2011; 21: 293
    • 190a Lifchits O, Charette AB. Org. Lett. 2008; 10: 2809
    • 190b Lifchits O, Alberico D, Zakharian I, Charette AB. J. Org. Chem. 2008; 73: 6838
    • 190c Sapeta K, Kerr MA. Org. Lett. 2009; 11: 2081
    • 191a Smith AG, Slade MC, Johnson JS. Org. Lett. 2011; 13: 1996
    • 191b Sathishkannan G, Srinivasan K. Org. Lett. 2011; 13: 6002
    • 191c Qu J.-P, Liang Y, Xu H, Sun X.-L, Yu Z.-X, Tang Y. Chem. Eur. J. 2012; 18: 2196
    • 191d Goldberg AF. G, O’Connor NR, Craig RA, Stoltz BM. Org. Lett. 2012; 14: 5314
    • 191e Humenny WJ, Kyriacou P, Sapeta K, Karadeolian A, Kerr MA. Angew. Chem. Int. Ed. 2012; 51: 11088
    • 192a Paquette LA. Chem. Rev. 1986; 86: 733
    • 192b Wong HN. C, Hon M.-Y, Tse CW, Yip Y.-C, Tanko J, Hudlicky T. Chem. Rev. 1989; 89: 165
    • 192c Salaün J. Top. Curr. Chem. 2000; 207: 1
    • 192d de Meijere A, Kozhushkov SI, Khlebnikow AF. Top. Curr. Chem. 2000; 207: 89
    • 192e de Meijere A, Kozhushkov SI, Hadjiarapoglou LP. Top. Curr. Chem. 2000; 207: 149
  • 193 Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
    • 194a Kerr MA, Keddy RG. Tetrahedron Lett. 1999; 40: 5671
    • 194b Grover HK, Lebold TP, Kerr MA. Org. Lett. 2011; 13: 220
    • 194c Wales SM, Walker MM, Johnson JS. Org. Lett. 2013; 15: 2558
    • 194d de Nanteuil F, Loup J, Waser J. Org. Lett. 2013; 15: 3738
    • 195a Ivanova OA, Budynina EM, Grishin YK, Trushkov IV, Verteletskii PV. Eur. J. Org. Chem. 2008; 5329
    • 195b Jiang X, Lim Z, Yeung Y.-Y. Tetrahedron Lett. 2013; 54: 1798
  • 196 Kim A, Kim S.-G. Eur. J. Org. Chem. 2015; 6419
  • 197 Kaicharla T, Roy T, Thangaraj M, Gonnade RG, Biju AT. Angew. Chem. Int. Ed. 2016; 55: 10061
  • 198 Dulin CC, Murphy KL, Nolin KA. Tetrahedron Lett. 2014; 55: 5280
  • 199 Lee J, Ko KM, Kim S.-G. Eur. J. Org. Chem. 2018; 4166
  • 200 Zhu M, Wang DC, Xie MS, Qu GR, Guo HM. Chem. Eur. J. 2018; 24: 15512
  • 201 Richmond E, Vuković VD, Moran J. Org. Lett. 2018; 20: 574
  • 202 Richmond E, Yi J, Vuković VD, Sajadi F, Rowley CN, Moran J. Chem. Sci. 2018; 9: 6411
  • 203 Irwin LC, Renwick CR, Kerr MA. J. Org. Chem. 2018; 83: 6235