Synlett 2015; 26(06): 745-750
DOI: 10.1055/s-0034-1379971
letter
© Georg Thieme Verlag Stuttgart · New York

Al(OTf)3-Catalyzed Preparation of 4-Hydroxy-3-propargylic ­Coumarins and Subsequent Regioselective Cyclization towards Furo- or Pyrano[3,2-c]coumarins

Sudipta Ponra
Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa   Email: bezuidbc@ufs.ac.za
,
Mukut Gohain
Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa   Email: bezuidbc@ufs.ac.za
,
Johannes H. van Tonder
Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa   Email: bezuidbc@ufs.ac.za
,
Barend C. B. Bezuidenhoudt*
Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa   Email: bezuidbc@ufs.ac.za
› Author Affiliations
Further Information

Publication History

Received: 03 November 2014

Accepted after revision: 12 December 2014

Publication Date:
05 February 2015 (online)


Abstract

An efficient and economical approach to functionalized furo[3,2-c]coumarin and pyrano[3,2-c]coumarin derivatives has been developed from 4-hydroxy-3-(prop-2-ynyl)coumarin derivatives through organocatalysis or metallo-organocatalysis. Selective ‘5-exo-dig’ or ‘6-endo-dig’ cyclization of the 4-hydroxy-3-(prop-2-ynyl)coumarin substrates could be achieved under organocatalytic {1,8-diazabicyclo[5.4.0]undec-7-ene} or metallo-organocatalytic (N-methylmorpholine/CuBr) conditions, respectively, to yield potentially bioactive heterocycles in excellent yields.

Supporting Information

 
  • References and Notes

  • 1 Domino Reactions in Organic Synthesis . Tietze LF, Gordon B, Kersten GM. Wiley-VCH; Weinheim: 2006
  • 2 Enders D, Grondal C, Hüttl MR. M. Angew. Chem. Int. Ed. 2007; 46: 1570
  • 3 Chen S, Salo EC, Kerrigan NJ In Asymmetric Organocatalysis 1: Lewis Base and Acid Catalysts . List B. Georg Thieme; Stuttgart: 2012: 455
  • 4 Singh RP, Deng L. Asymmetric Organocatalysis 2: Brønsted Base and Acid Catalysts and Additional Topics. In Science of Synthesis . Maruoka K. Georg Thieme; Stuttgart: 2012: 41
  • 5 Bisai V, Bisai A, Singh VK. Tetrahedron 2012; 68: 4541
  • 6 De Jong S, Nosal DG, Wardrop DJ. Tetrahedron 2012; 68: 4067
  • 7 Fraile A, Parra A, Tortosa M, Aleman J. Tetrahedron 2014; 70: 9145
  • 8 Mahrwald R. Drug Discovery Today: Technol. 2013; 10: 29
  • 9 Ma J, Cahard D. Angew. Chem. Int. Ed. 2004; 43: 4566
  • 10 Gröger H. Chem. Eur. J. 2001; 7: 5246
  • 11 Hodgson DM, Charlton A. Tetrahedron 2014; 70: 2207
  • 12 Matsui K, Takizawa S, Sasai H. Synlett 2006; 761
  • 13 Gryko D, Zimnicka M, Lipinski R. J. Org. Chem. 2007; 72: 964
  • 14 Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2001; 40: 3726
  • 15 Jusseau X, Chabaud L, Guillou C. Tetrahedron 2014; 70: 2595
  • 16 Duthaler RO. Angew. Chem. Int. Ed. 2003; 42: 975
  • 17 Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138
  • 18 Murray RD. H, Méndez J, Brown SA. The Natural Coumarins: Occurrence, Chemistry, and Biochemistry. 1982
  • 19 Coumarins: Biology, Applications and Mode of Action . O’Kennedy R, Thornes RD. Wiley; Chichester: 1997
  • 20 Silvan AM, Abad MJ, Bermejo P, Sollhuber M, Villar A. J. Nat. Prod. 1996; 59: 1183
  • 21 Romines KR, Morris JK, Howe WJ, Tomich PK, Horng M.-M, Chong K.-T, Hinshaw RR, Anderson DJ, Strohbach JW, Turner S.-R, Miszak SA. J. Med. Chem. 1996; 39: 4125
  • 22 Murakami A, Gao G, Omura M, Yano M, Ito C, Furukawa H, Takahashi D, Koshimizu K, Ohigashi H. Bioorg. Med. Chem. Lett. 2000; 10: 59
  • 23 Zahradnik M. The Production and Application of Fluorescent Brightening Agents. John Wiley and Sons; New York: 1992
  • 24 Chang S, Grubbs RH. J. Org. Chem. 1998; 63: 864
  • 25 Gowrisankar S, Lee K.-Y, Kim J.-N. Bull. Korean Chem. Soc. 2007; 28: 624
  • 26 Ibrahim MA, Ali TE, Alnamer YA, Gabr YA. ARKIVOC 2010; (i): 98
  • 27 Khadem S, Marles RJ. Molecules 2012; 17: 191
  • 28 Patil RB, Sawant SD, Thombare PA. Int. J. Pharm. Tech. Res. 2012; 4: 375
  • 29 Corradini E, Foglia P, Giansanti P, Gubbiotti R, Samperi R, Laganà A. Nat. Prod. Res. 2011; 25: 469
  • 30 Verma AK, Pratap R. Tetrahedron 2012; 68: 8523
  • 31 Dumontet V, Van H N, Adeline MT, Riche C, Chiaroni A, Sévenet T, Guéritte F. J. Nat. Prod. 2004; 67: 858
  • 32 Zhang J.-Y, Li Y, Wang W.-K, She X.-G, Pan X.-F. J. Org. Chem. 2006; 71: 2918
  • 33 Kiuchi F, Goto Y, Sugimoto Y, Akao N, Kondo K, Tsuda Y. Chem. Pharm. Bull. 1993; 41: 1640
  • 34 Yamada K, Subeki Nabeta K, Yamasaki M, Katakura K, Matsuura H. Biosci. Biotechnol. Biochem. 2009; 73: 776
  • 35 Danishefsky S, Kerwin JF. Jr, Kobayashi S. J. Am. Chem. Soc. 1982; 104: 358
  • 36 Danishefsky S, Kato N, Askin D, Kerwin JF. Jr. J. Am. Chem. Soc. 1982; 104: 360
  • 37 Cadierno V, Díez J, Gimeno J, Nebra N. J. Org. Chem. 2008; 73: 5852
  • 38 Gohain M, Marais C, Bezuidenhoudt BC. B. Tetrahedron Lett. 2012; 53: 4704
  • 39 Muthusamy S, Srinivasarao AB, Chidambaram G. Synth. Commun. 2002; 32: 3247
  • 40 Mattson AE, Bharadwaj AR, Scheidt HA. J. Am. Chem. Soc. 2004; 126: 2314
  • 41 Hachisu Y, Bode JW, Suzuki K. J. Am. Chem. Soc. 2003; 125: 8432
  • 42 Rhee H, Kim JY. Tetrahedron Lett. 1998; 39: 1365
  • 43 Typical Procedures
    4-Hydroxy-3-(prop-2-ynyl)coumarins 3a–n
    Substituted 4-hydroxycoumarin derivatives (1 mmol) were dissolved in MeCN (3 mL), and the solution was stirred at r.t. for 5 min before the substituted propargyl alcohol (1.2 mmol) was added and stirring continued for an additional 5 min. After subsequent addition of Al(OTf)3 (0.1 mmol) the mixture was heated to reflux for 5 h. Upon completion of the reaction (TLC) the solvent was removed in vacuo, H2O was added (25 mL), and the crude product was extracted into CH2Cl2 (3 × 25 mL). The organic phases were combined, washed with brine (4 × 25 mL), and dried over anhydrous Na2SO4. After filtration and removal of the solvent, the pure products 3 were obtained by column chromatography (hexane–EtOAc, 4:1). Furo[3,2-c]coumarins 4a–n To a stirring solution of compound 3 (1 mmol) in CH2Cl2 (2 mL) was added DBU (0.1 mmol), and the mixture was stirred for 4 h. Upon completion of the reaction (TLC) H2O (25 mL) was added, and the product was extracted into CH2Cl2 (3 × 25 mL). The combined organic phases were washed with brine (4 × 25 mL), and dried over anhydrous Na2SO4. After filtration, the solvent was removed by distillation and the crude product purified by column chromatography (hexane–EtOAc, 6:1). Pyrano-[3,2-c]coumarins 5a–n To a stirred solution of 4-hydroxy-3-(prop-2-ynyl)coumarin 3 (1 mmol) in CH2Cl2 (2 mL) at r.t. were added NMM (1 mmol) and CuBr (0.1 mmol), and stirring was continued for 4 h. Upon completion of the reaction (TLC) the mixture was filtered to remove excess solid CuBr, H2O (25 mL) was added, and the product was extracted into CH2Cl2 (3 × 25 mL). The combined organic phases were washed with brine (4 × 25 mL), and dried over anhydrous Na2SO4. Filtration of the extract and removal of the solvent by distillation followed by column chromatography (hexane–EtOAc, 5:1) gave the desired product 5. Representative Analytical Data
    4-Hydroxy-3-(prop-2-ynyl)-coumarin (3m)
    1H NMR (300 MHz, CDCl3): δ = 2.25 (s, 3 H), 2.31 (s, 3 H), 5.67 (s, 1 H), 7.10 (m, 3 H), 7.24–7.29 (m, 4 H), 7.41–7.44 (m, 4 H), 7.56 (br d, 1 H, J = 2.3 Hz), 8.25 (s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 20.9, 21.1, 33.0, 86.8, 87.6, 105.0, 115.6, 116.3, 121.5, 123.1, 127.0, 128.5, 129.1, 129.7, 131.8, 133.4, 133.8, 135.6, 137.5, 150.8, 161.1, 162.8. ESI-HRMS: m/z calcd for C26H20O3 [M + Na]+: 403.1310; found: 403.1320. Furo[3,2-c]coumarin (4m) 1H NMR (300 MHz, CDCl3): δ = 2.32 (s, 3 H), 2.35 (s, 3 H), 4.08 (s, 2 H), 7.15–7.25 (m, 9 H), 7.34 (d, 2 H, J = 9.0 Hz), 7.55 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 20.9, 21.4, 32.5, 109.5, 112.5, 116.9, 120.6, 121.8, 126.8, 127.6, 128.4, 128.8, 129.1, 129.7, 131.5, 134.1, 137.4, 137.9, 150.7, 152.7, 157.0, 158.0. ESI-HRMS: m/z calcd for C26H20O3 [M + Na]+: 403.1310; found: 403.1324. Pyrano[3,2-c]coumarin (5m) Mp 172–174 °C. 1H NMR (300 MHz, CDCl3): δ = 2.25 (s, 3 H), 2.43 (s, 3 H), 5.19 (s, 1 H), 5.62 (s, 1 H), 7.09 (d, 2 H, J = 6.0 Hz), 7.13–7.22 (m, 3 H), 7.22 (d, 1 H, J = 6.0 Hz), 7.28–7.38 (m, 3 H), 7.52–7.58 (m, 3 H). 13C NMR (75 MHz, CDCl3): δ = 21.0, 21.2, 49.8, 106.5, 107.6, 111.3, 117.0, 122.3, 127.1, 127.8, 128.5, 128.6, 129.7, 134.0, 134.1, 134.2, 136.8, 137.5, 153.5, 158.0, 158.8, 164.2. ESI-HRMS: m/z calcd for C26H20O3 [M + Na]+: 403.1310; found: 403.1319.