Synlett 2022; 33(11): 1097-1101
DOI: 10.1055/a-1828-7504
letter

Regioselective Construction of Coumarin-1,2,4-triazines via a Cs2CO3-Catalyzed [3+3] Cycloaddition Reaction

Xuan-Yu Liu
a   Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China
,
a   Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China
,
Jun-An Ma
a   Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China
b   Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China
› Author Affiliations
This work is supported by the National Natural Science Foundation of China (92156025, 21901181, and 21961142015) and the National Key Research and Development Program of China (2019YFA0905100).


Abstract

A cesium carbonate (Cs2CO3)-catalyzed [3+3] cycloaddition reaction of coumarin-diazo reagents with glycine imino esters is established to produce tetrahydro-1,2,4-triazines in good yields with excellent regioselectivity. One-pot cycloaddition/oxidation protocol could further provide practical access to a series of new coumarin-decorated 1,2,4-triazines.

Supporting Information



Publication History

Received: 10 March 2022

Accepted after revision: 19 April 2022

Accepted Manuscript online:
19 April 2022

Article published online:
06 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Zhang F.-G, Chen Z, Tang X, Ma J.-A. Chem. Rev. 2021; 121: 14555
    • 1b Cascioferro S, Parrino B, Spano V, Carbone A, Montalbano A, Barraja P, Diana P, Cirrincione G. Eur. J. Med. Chem. 2017; 142: 328
    • 1c Oliveira BL, Guo Z, Bernardes GJ. Chem. Soc. Rev. 2017; 46: 4895
    • 1d Kumar R, Sirohi TS, Singh H, Yadav R, Roy RK, Chaudhary A, Pandeya SN. Mini-Rev. Med. Chem. 2014; 14: 168
    • 2a Raw SA, Taylor RJ. K. Recent Advances in the Chemistry of 1,2,4-Triazines, In Advances in Heterocyclic Chemistry, Vol. 100. Katritzky AR. Academic Press; London: 2010. Chap. 3
    • 2b Li M, Ding Q, Li B, Yu Y, Huang H, Huang F. Youji Huaxue 2019; 39: 2713
    • 2c Hiebel M.-A, Suzenet F. Prog. Heterocycl. Chem. 2021; 32: 467

      For recent selected examples, see:
    • 3a Altuna-Urquijo M, Stanforth SP, Tarbit B. Tetrahedron Lett. 2005; 46: 6111
    • 3b Limanto J, Desmond RA, Gauthier DR, Devine PN, Reamer RA, Volante RP. Org. Lett. 2003; 5: 2271
    • 3c Laphookhieo S, Jones S, Raw SA, Sainz YF, Taylor RJ. K. Tetrahedron Lett. 2006; 47: 3865
    • 3d Tang D, Wang J, Wu P, Guo X, Li J.-H, Yang S, Chen B.-H. RSC Adv. 2016; 6: 12514
    • 3e Lukin A, Vedekhina T, Tovpeko D, Zhurilo N, Krasavin M. RSC Adv. 2016; 6: 57956
    • 3f Dowling MS, Jiao W, Hou J, Jiang Y, Gong S. J. Org. Chem. 2018; 83: 4229
    • 3g Meng J, Wen M, Zhang S, Pan P, Yu X, Deng W.-P. J. Org. Chem. 2017; 82: 1676
    • 4a Ma J.-A, Chen Z, Ren N, Zhang F.-G. CN107935955, 2017
    • 4b Ma J.-A, Ren N, Chen Z, Zhang F.-G. CN107827834, 2017
    • 4c Ma J.-A, Ren N, Chen Z, Zhang F.-G. CN 108285434, 2018
    • 4d Zhang L, Chen J.-J, Liu S.-S, Liang Y.-X, Zhao Y.-L. Adv. Synth. Catal. 2018; 360: 2172
    • 4e Chen Z, Ren N, Ma X, Nie J, Zhang F.-G, Ma J.-A. ACS Catal. 2019; 9: 4600
    • 4f Huang Y.-J, Nie J, Cheung CW, Ma J.-A. Synlett 2020; 31: 1107
  • 5 Liu X.-Y, Zhai S.-J, Feng F-F, Zhang F.-G, Ma J.-A. ChemCatChem 2020; 12: 5623
    • 6a Medina FG, Marrero JG, Macías-Alonso M, González MC, Córdova-Guerrero I, García AG. T, Osegueda-Roblesa S. Nat. Prod. Rep. 2015; 32: 1472
    • 6b Stefanachi A, Leonetti F, Pisani L, Catto M, Carotti A. Molecules 2018; 23: 250
    • 6c Zhang L, Xu ZE. J. Med. Chem. 2019; 181: 11587
    • 6d Cao D.-X, Liu Z.-Q, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W. Chem. Rev. 2019; 119: 10403
    • 6e Priyanka Priyanka, Sharma RK, Katiyar D. Synthesis 2016; 48: 2303
    • 7a Ito K, Sawanobori J. Synth. Commun. 1982; 12: 665
    • 7b Ito K, Sawanobori J. Chem. Pharm. Bull. 1983; 31: 3014
    • 7c Ito K, Sawanobori J. Chem. Pharm. Bull. 1987; 35: 1255
    • 7d Takadate A, Tahara T, Fujino H, Goya S. Chem. Pharm. Bull. 1982; 30: 4120
    • 8a Chen Z, Zhang Y, Nie J, Ma J.-A. Org. Lett. 2018; 20: 2120
    • 8b Xiao M.-Y, Zheng M.-M, Peng X, Xue X.-S, Zhang F.-G, Ma J.-A. Org. Lett. 2020; 22: 7762
    • 8c Li J.-K, Zhou B, Tian Y.-C, Jia C, Xue X.-S, Zhang F.-G, Ma J.-A. Org. Lett. 2020; 22: 9585
    • 8d Zhang F.-G, Chen Z, Cheung CW, Ma J.-A. Chin. J. Chem. 2020; 38: 1132
    • 8e Tian Y.-C, Li J.-K, Zhang F.-G, Ma J.-A. Adv. Synth. Catal. 2021; 363: 2093
    • 8f Zhai S.-J, Cahard D, Zhang F.-G, Ma J.-A. Chin. Chem. Lett. 2022; 33. 863
  • 9 CCDC 2153601 (3a) and 2153602 (4a) contain the corresponding supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 10 Typical Experimental Procedure for the Cs2CO3-Catalyzed [3+3] Cycloaddition Reaction A 10 mL Schlenk tube equipped with a stirring bar and capped with a rubber septum was charged with coumarin-diazo reagents (1, 1.0 equiv., 0.2 mmol), glycine imino ester (2, 1.5 equiv., 0.3 mmol), Cs2CO3 (0.2 equiv., 0.04 mmol, 13 mg). CH2Cl2 (2.0 mL) was transferred into the tube. The reaction mixture was stirred under an air atmosphere at rt for 12 h. After the reaction completed (detected by TLC), the reaction mixture was purified by flash chromatography on silica gel (eluting with ethyl acetate/petroleum ether = 1:1) to give the desired product 3. Characterization Data for Compound 3a Obtained as a yellow solid after column chromatography (EtOAc/petroleum ether = 2:1, Rf = 0.5), 83.3 mg, 93% yield, mp 145–147 °C. 1H NMR (600 MHz, CDCl3): δ = 8.52–8.49 (m, 1 H), 7.82–7.80 (m, 1 H), 7.66–7.61 (m, 2 H), 7.49 (d, J = 8.8 Hz, 1 H), 7.27–7.17 (m, 3 H), 7.12 (d, J = 8.1 Hz, 2 H), 6.56 (s, 1 H), 5.87 (s, 1 H), 5.73 (d, J = 3.4 Hz, 1 H), 4.78–4.63 (m, 1 H), 4.23–4.10 (m, 1 H), 3.95 (s, 3 H) ppm. 13C NMR (151 MHz, CDCl3): δ = 162.1, 160.4, 152.5, 151.1, 136.5, 135.9, 135.1, 134.6, 129.4, 129.3, 128.3, 127.7, 127.5, 124.4, 123.2, 122.8, 119.2, 115.0, 113.1, 59.5, 56.0, 53.4 ppm. HRMS (ESI-TOF): m/z [M + H] calcd for C24H19N3O4Cl: 448.1064; found: 448.1064.
    • 11a Boger DL, Panek JS. J. Org. Chem. 1981; 46: 2179
    • 11b Zhang J, Shukla V, Boger DL. J. Org. Chem. 2019; 84: 9397
    • 11c Foster RA. A, Willis MC. Chem. Soc. Rev. 2013; 42: 63
    • 11d Lorion M, Guillaumet G, Brière J.-F, Suzenet F. Org. Lett. 2015; 17: 3154
  • 12 Raw SA, Taylor RJ. K. Chem. Commun. 2004; 508