RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2020; 31(11): 1107-1111
DOI: 10.1055/s-0039-1690894
DOI: 10.1055/s-0039-1690894
letter
Silver-Catalyzed [3+3] Annulation of Glycine Imino Esters with Seyferth–Gilbert Reagent To Access Tetrahydro-1,2,4-triazinecarboxylate Esters
Authors
We thank the National Key Research and Development Program of China (No. 2019YFA0905100), National Natural Science Foundation of China (Nos. 21772142, 21971186, and 21961142015), and Tianjin University (start-up grants) for financial support.
Weitere Informationen
Publikationsverlauf
Received: 07. Februar 2020
Accepted after revision: 23. März 2020
Publikationsdatum:
08. April 2020 (online)

Abstract
A silver-catalyzed protocol for [3+3] annulation of glycine imino esters with Seyferth–Gilbert reagent was developed. A variety of phosphorylated tetrahydro-1,2,4-triazinecarboxylate esters were synthesized in moderate to good yields and with excellent diastereoselectivities. The dehydrogenation of a tetrahydro-1,2,4-triazine product to the corresponding triazine counterpart was also demonstrated.
Key words
[3+3] annulation - glycine imino esters - Seyferth–Gilbert reagent - triazines - phosphorylationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690894.
- Supporting Information (PDF)
Primary Data
- Primary Data (ZIP)
for this article are available online at https://doi.org/10.1055/s-0039-1690894 and can be cited using the following DOI: 10.4125/pd0116th.
-
References and Notes
- 1a Moonen K, Laureyn I, Stevens CV. Chem. Rev. 2004; 104: 6177
- 1b De Clercq E, Holý A. Nat. Rev. Drug Discovery 2005; 4: 928
- 1c Ma J.-A. Chem. Soc. Rev. 2006; 35: 630
- 1d Naydenova ED, Todorov PT, Troev KD. Amino Acids 2010; 38: 23
- 1e Demmer CS, Krogsgaard-Larsen N, Bunch L. Chem. Rev. 2011; 111: 7981
- 1f Elliott TS, Slowey A, Ye Y, Conway SJ. Med. Chem. Commun. 2012; 3: 735
- 1g Romanenko VD, Kukhar VP. Beilstein J. Org. Chem. 2013; 9: 991
- 1h Turcheniuk KV, Kukhar VP, Röschenthaler G.-V, Aceña JL, Soloshonok VA, Sorochinsky AE. RSC Adv. 2013; 3: 6693
- 1i Boissezon R, Muller J, Beaugeard V, Monge S, Robin J.-J. RSC Adv. 2014; 4: 35690
- 2 Pinalli R, Dalcanale E. Acc. Chem. Res. 2013; 46: 399
- 3a Queffélec C, Petit M, Janvier P, Knight DA, Bujoli B. Chem. Rev. 2012; 112: 3777
- 3b Ma Y.-N, Li S.-X, Yang S.-D. Acc. Chem. Res. 2017; 50: 1480
- 4a Marinozzi M, Pertusati F, Serpi M. Chem. Rev. 2016; 116: 13991
- 4b Baiju TV, Namboothiri IN. N. Chem. Rec. 2017; 17: 939
- 4c Dhameja M, Pandey J. Asian J. Org. Chem. 2018; 7: 1502
- 5a Ohira S. Synth. Commun. 1989; 19: 561
- 5b Müller S, Liepold B, Roth GJ, Bestmann HJ. Synlett 1996; 521
- 6a Seyferth D, Marmor RS, Hilbert P. J. Org. Chem. 1971; 36: 1379
- 6b Gilbert JC, Giamalva DH. J. Org. Chem. 1992; 57: 4185
- 7a Verma D, Mobin S, Namboothiri IN. N. J. Org. Chem. 2011; 76: 4764
- 7b Marinozzim M, Tondi S, Marcelli G, Giorgi G. Tetrahedron 2014; 70: 9485
- 7c Du T, Du F, Ning Y, Peng Y. Org. Lett. 2015; 17: 1308
- 7d Huang N, Zou L, Peng Y. Org. Lett. 2017; 19: 5806
- 7e Zheng B, Chen H, Zhu L, Hou X, Wang Y, Lan Y, Peng Y. Org. Lett. 2019; 21: 593
- 8a Muruganantham R, Mobin SM, Namboothiri IN. N. Org. Lett. 2007; 9: 1125
- 8b Mohanan K, Martin AR, Toupet L, Smietana M, Vasseur J.-J. Angew. Chem. Int. Ed. 2010; 49: 3196
- 8c Martin AR, Mohanan K, Toupet L, Vasseur J.-J, Smietana M. Eur. J. Org. Chem. 2011; 3184
- 8d Kumar R, Verma D, Mobin SM, Namboothiri IN. N. Org. Lett. 2012; 14: 4070
- 8e Shelke AM, Suryavanshi G. Org. Biomol. Chem. 2015; 13: 8669
- 8f Ahamad S, Gupta AK, Kantc R, Mohanan K. Org. Biomol. Chem. 2015; 13: 1492
- 8g Chaturvedi AK, Kant R, Rastogi N. J. Org. Chem. 2016; 81: 11291
- 8h Gupta AK, Vaishanv NK, Kantc R, Mohanan K. Org. Biomol. Chem. 2017; 15: 6411
- 8i Peng X, Zhang X, Li S, Lu Y, Lan L, Yang C. Org. Chem. Front. 2019; 6: 1775
- 9a Bartnik R, Leśniak S, Wasiak P. Tetrahedron Lett. 2004; 45: 7301
- 9b Ahamad S, Kant R, Mohanan K. Org. Lett. 2016; 18: 280
- 10 Zhai S.-J, Peng X, Zhang F.-G, Ma J.-A. Org. Lett. 2019; 21: 9884
- 11a Meng J, Wu D, Shi Y, Yu X, Deng W.-P. Tetrahedron 2015; 71: 1074
- 11b Liao L, Zhang H, Zhao X. ACS Catal. 2018; 8: 6745
- 11c Song W, Zheng N, Li M, Ullah K, Zheng Y. Adv. Synth. Catal. 2018; 360: 2429
- 11d Huang N, Tong X, Zhou S, Guo Q, Peng Y. Adv. Synth. Catal. 2019; 361: 4805
- 11e Chalyk BA, Sosedko AS, Volochnyuk DM, Tolmachev AA, Gavrilenko KS, Liashuk OS, Grygorenko OO. Org. Biomol. Chem. 2018; 16: 9152
- 11f Wang L, Ma T, Qiao M, Wu Q, Shi D, Xiao W. Synthesis 2019; 51: 522
- 12a Ma J.-A, Chen Z, Ren N, Zhang F.-G. CN 107935955, 2017
- 12b Ma J.-A, Chen Z, Ren N, Zhang F.-G. CN 107827834, 2017
- 12c Chen Z, Ren N, Ma X, Nie J, Zhang F.-G, Ma J.-A. ACS Catal. 2019; 9: 4600
- 12d Ma J.-A, Tian Y.-C, Zhang F.-G. CN 109956911, 2019
- 13 Zhang L, Chen J.-J, Liu S.-S, Liang Y.-X, Zhao Y.-L. Adv. Synth. Catal. 2018; 360: 2172
- 14a For examples, see: Chen Z, Fan S.-Q, Zheng Y, Ma J.-A. Chem. Commun. 2015; 51: 16545
- 14b Chen Z, Zheng Y, Ma J.-A. Angew. Chem. Int. Ed. 2017; 56: 4569
- 14c Zeng J.-L, Chen Z, Zhang F.-G, Ma J.-A. Org. Lett. 2018; 20: 4562
- 14d Chen Z, Zhang Y, Nie J, Ma J.-A. Org. Lett. 2018; 20: 2120
- 14e Zhang Y, Chen Z, Nie J, Zhang F.-G, Ma J.-A. J. Org. Chem. 2019; 84: 7148
- 14f Peng X, Xiao M.-Y, Zeng J.-L, Zhang F.-G, Ma J.-A. Org. Lett. 2019; 21: 4808
- 14g Zhang Z.-Q, Zheng M.-M, Xue X.-S, Marek I, Zhang F.-G, Ma J.-A. Angew. Chem. Int. Ed. 2019; 58: 18191
- 14h Zhang F.-G, Peng X, Ma J.-A. Youji Huaxue 2019; 39: 109
- 14i Xiao M.-Y, Chen Z, Zhang F.-G, Ma J.-A. Tetrahedron 2020; 76: 131063
- 15a Qin S, Zheng Y, Zhang F.-G, Ma J.-A. Org. Lett. 2017; 19: 3406
- 15b Zhang F.-G, Lv N, Zheng Y, Ma J.-A. Chin. J. Chem. 2018; 36: 723
- 15c Rong M.-Y, Yang L, Nie J, Zhang F.-G, Ma J.-A. Org. Lett. 2019; 21: 4280
- 15d Guo R, Lv N, Zhang F.-G, Ma J.-A. Org. Lett. 2018; 20: 6994
- 15e Zeng J.-L, Zhang Y, Zheng M.-M, Zhang Z.-Q, Xue X.-S, Zhang F.-G, Ma J.-A. Org. Lett. 2019; 21: 8244
- 16 CCDC 1977600 contains the supplementary crystallographic data for compound 3b. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 17 Methyl 5-(4-Aryl)-6-(diethoxyphosphoryl)-1,4,5,6-tetrahydro-1,2,4-triazine-3-carboxylates 3a–q; General Procedure An oven-dried 10 mL Schlenk tube equipped with a stirring bar and capped with a rubber septum was charged with the appropriate glycine imino ester 1 (1.5 equiv, 0.45 mmol), AgF (0.03 mmol, 10 mol %), and Cs2CO3 (1 equiv, 0.30 mmol). The tube was evacuated and backfilled with argon three times. THF (1.5 mL) was transferred into the tube under a positive argon pressure by using a syringe. A solution of Seyferth–Gilbert reagent 2 (1 equiv, 0.3 mmol) in THF (1.5 mL) was then transferred into the mixture by syringe under a positive argon pressure, and the mixture was stirred under argon at rt for 12 h. The mixture was finally concentrated in vacuo in a rotary evaporator and the residue was purified by flash chromatography [silica gel, PE–EtOAc then EtOAc–MeOH (20:1)]. Methyl 5-(4-Chlorophenyl)-6-(diethoxyphosphoryl)-1,4,5,6-tetrahydro-1,2,4-triazine-3-carboxylate (3a) Brown solid; yield: 85.6 mg (73%); mp 120–122 °C. 1H NMR (400 MHz, CDCl3): δ = 7.34–7.29 (m, 2 H), 7.25–7.21 (m, 2 H), 5.73 (s, 1 H), 5.56 (t, J = 2.2 Hz, 1 H), 4.78–4.83 (m, 1 H), 4.11–3.90 (m, 4 H), 3.86 (s, 3 H), 3.21–3.17 (m, 1 H), 1.24 (t, J = 7.1 Hz, 3 H), 1.12 (t, J = 7.1 Hz, 3 H). 31P NMR (162 MHz, CDCl3): δ = 20.08 (p, J = 8.0 Hz). 13C NMR (101 MHz, CDCl3): δ = 162.1, 138.7 (d, J = 4.5 Hz), 136.2, 134.5, 129.0, 128.8, 63.0 (d, J = 6.7 Hz), 62.7 (d, J = 7.0 Hz), 54.2, 53.1, 52.9 (d, J = 154.1 Hz), 16.5 (d, J = 5.9 Hz), 16.3 (d, J = 6.1 Hz). HRMS (ESI): m/z [M + H]+ calcd for C15H22ClN3O5P: 390.0980; found: 390.0981.
For reviews, see:
Other phosphorylated-based synthons have also been used for the synthesis of nitrogenous heterocycles; for examples, see:
Our group has also used diazomethane reagents for other bond-forming reactions, see: