Subscribe to RSS
DOI: 10.1055/a-2516-2906
Recent Progress in Base-Metal-Catalyzed Dearomative Reaction of N-Heteroarenes
We are grateful to National Natural Science Foundation of China (22001068), Natural Science Foundation of Hunan Province (2022JJ10034) for financial support.

Abstract
Three-dimensional nitrogen-containing heterocyclic compounds widely exist in many natural products and drugs. The dearomatization of N-heteroarenes and their derivatives have been recognized as one of the most important and powerful strategies for the rapid and efficient synthesis of various three-dimensional nitrogen-containing heterocyclic compounds. In this short review, the recent and representative advances in base-metal-catalyzed dearomatization of N-heteroarenes are summarized and discussed.
1 Introduction
2 Dearomatization of Indoles
2.1 Copper Catalysis
2.2 Nickel Catalysis
2.3 Cobalt Catalysis
2.4 Other Catalysts
3 Dearomatization of Pyridines, Quinolines, Isoquinolines, and Pyrazine
3.1 Copper Catalysis
3.2 Nickel Catalysis
3.3 Cobalt Catalysis
3.4 Other Catalysts
4 Summary and Outlook
Key words
base metal catalysis - N-heterocycles - dearomatization - copper catalysis - nickel catalysis - cobalt catalysisPublication History
Received: 03 December 2024
Accepted after revision: 14 January 2025
Accepted Manuscript online:
14 January 2025
Article published online:
27 February 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Zheng C, You S.-L. Nat. Prod. Rep. 2019; 36: 1589
- 1b Silva TS, Rodrigues MT. Jr, Santos H, Zeoly LA, Almeida WP, Barcelos RC, Gomes RC, Fernandes FS, Coelho F. Tetrahedron 2019; 75: 2063
- 1c Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 1d Taylor RD, MacCoss M, Lawson AD. J. Med. Chem. 2014; 57: 5845
- 2a Ramanitrahasimbola D, Rasoanaivo P, Ratsimamanga S, Vial H. Mol. Biochem. Parasitol. 2006; 146: 58
- 2b Peng L, Xu D, Yang X, Tang J, Feng X, Zhang S.-L, Yan H. Angew. Chem. Int. Ed. 2019; 58: 216
- 2c Majumdar KC, Chattopadhyay SK. Heterocycles in Natural Product Synthesis . Wiley-VCH; Weinheim: 2011: 267
- 2d Naito R, Yonetoku Y, Okamoto Y, Toyoshima A, Ikeda K, Takeuchi M. J. Med. Chem. 2005; 48: 6597
- 2e Wang X, Zhang Z.-Y, Arora S, Hughes L, Wang J, Powers D, Christensen J, Lu S, Kansra V. J. Clin. Pharmacol. 2018; 58: 202
- 3 Egorova KS, Ananikov VP. Angew. Chem. Int. Ed. 2016; 55: 12150
- 4a Chen J.-B, Jia Y.-X. Org. Biomol. Chem. 2017; 15: 3550
- 4b Chen C, You S.-L. Chem 2016; 1: 830
- 4c Huang G, Yin B. Adv. Synth. Catal. 2019; 361: 405
- 4d Cerveri A, Bandini M. Chin. J. Chem. 2020; 38: 287
- 4e Pang M, Chang H, Zhang F, Zhang J. Chin. J. Org. Chem. 2023; 43: 1271
- 4f Ahamed M, Todd MH. Eur. J. Org. Chem. 2010; 31: 5935
- 4g Ding Q, Zhou X, Fan R. Org. Biomol. Chem. 2014; 12: 4807
- 4h Bertuzzi G, Bernardi L, Fochi M. Catalysts 2018; 8: 632
- 4i Mu B.-S, Zhang Z.-H, Wu W.-B, Yu J.-S, Zhou J. Acta Chim. Sin. 2021; 79: 685
- 4j Escolano M, Gaviña D, Alzuet-Piña G, Díaz-Oltra S, Sánchez-Roselló M, Pozo C. Chem. Rev. 2024; 124: 1122
- 5a Zhu S, MacMillan DW. C. J. Am. Chem. Soc. 2012; 134: 10815
- 5b Kieffer ME, Chuang KV, Reisman SE. Chem. Sci. 2012; 3: 3170
- 5c Liu C, Zhang W, Dai L.-X, You S.-L. Org. Lett. 2012; 14: 4525
- 6 Shao W, Li H, Liu C, Liu C.-J, You S.-L. Angew. Chem. Int. Ed. 2015; 54: 7684
- 7 Liu C, Yi J.-C, Zheng Z.-B, Tang Y, Dai L.-X, You S.-L. Angew. Chem. Int. Ed. 2016; 55: 751
- 8a Kubota K, Hayama K, Iwamoto H, Ito H. Angew. Chem. Int. Ed. 2015; 54: 8809
- 8b Hayama K, Kubota K, Iwamoto H, Ito H. Chem. Lett. 2017; 46: 1800
- 9 Chen L, Shen J.-J, Gao Q, Xu S. Chem. Sci. 2018; 9: 5855
- 10 Shi Y, Gao Q, Xu S. J. Org. Chem. 2018; 83: 14758
- 11 Simlandy AK, Brown MK. Angew. Chem. Int. Ed. 2021; 60: 12366
- 12 Xu M.-M, Cao W.-B, Ding R, Li H.-Y, Xu X.-P, Ji S.-J. Org. Lett. 2019; 21: 6217
- 13 Liu J, Fang Z, Liu X, Dou Y, Jiang J, Zhang F, Qu J, Zhu Q. Chin. Chem. Lett. 2020; 31: 1332
- 14 Ye J.-H, Zhu L, Yan S.-S, Miao M, Zhang X.-C, Zhou W.-J, Li J, Lan Y, Yu D.-G. ACS Catal. 2017; 7: 8324
- 15 Zhao R, Deng S, Huang R, Kong H.-H, Lu Y, Yin T, Wang J, Li Y, Zhu C, Pan F, Qi X, Xu H. ACS Catal. 2024; 14: 9254
- 16 Xiong H, Xu H, Liao S, Xie Z, Tang Y. J. Am. Chem. Soc. 2013; 135: 7851
- 17 Gerten AL, Stanley LM. Org. Chem. Front. 2016; 3: 339
- 18 Qin X, Lee M, Zhou JS. Angew. Chem. Int. Ed. 2017; 56: 12723
- 19 Shen C, Liu R.-R, Fan R.-J, Li Y.-L, Xu T.-F, Gao J.-R, Jia Y.-X. J. Am. Chem. Soc. 2015; 137: 4936
- 20 Marchese AD, Lind F, Mahon AE, Yoon H, Lautens M. Angew. Chem. Int. Ed. 2019; 58: 5095
- 21 Zhang W.-Q, Shen H.-C, Gong L.-Z. Org. Lett. 2022; 24: 6637
- 22 Zhang H.-J, Gu Q, You S.-L. Org. Lett. 2019; 21: 9420
- 23 Trammel GL, Kuniyil R, Crook PF, Liu P, Brown MK. J. Am. Chem. Soc. 2021; 143: 16502
- 24 Liu K, Song Y.-F, Gao Y, Luo J.-Q, Jia Y.-X. Chem. Commun. 2022; 58: 5893
- 25a Hu Y.-Y, Xu X.-Q, Deng W.-C, Liang R.-X, Jia Y.-X. Org. Lett. 2023; 25: 6122
- 25b Huang X, Tan X, Zhang X, Song Z, Ma M, Chen B, Ma Y. Org. Chem. Front. 2023; 10: 5940
- 26 Huang X, Ou M, Hong L, Qin W, Ma Y. ACS Catal. 2024; 14: 6432
- 27 Zhang J, Chen Z, Wu H.-H, Zhang J. Chem. Commun. 2012; 48: 1817
- 28 Chen W, Xia Y, Lin L, Yuan X, Guo S, Liu X, Feng X. Chem. Eur. J. 2015; 21: 15104
- 29 Chen S, Cai M, Huang J, Yao H, Lin A. Org. Lett. 2021; 23: 2212
- 30a Teng M.-Y, Liu D.-Y, Mao S.-Y, Wu X, Chen J.-H, Zhong M.-Y, Huang F.-R, Yao Q.-J, Shi B.-F. Angew. Chem. Int. Ed. 2024; 63: e202407640
- 30b Das A, Kumaran S, Sankar HS. R, Prekumar JR, Sundararaju B. Angew. Chem. Int. Ed. 2024; 63: e202406195
- 31 Zhang J, Li J, Ward JS, Truong K.-N, Rissanen K, Albrecht M. J. Org. Chem. 2020; 85: 12160
- 32 Mo K, Zhou X, Wu J, Zhao Y. J. Org. Chem. 2022; 87: 16106
- 33a Sun Z, Yu S, Ding Z, Ma D. J. Am. Chem. Soc. 2007; 129: 9300
- 33b Black DA, Beveridge RE, Arndtsen BA. J. Org. Chem. 2008; 73: 1906
- 34a Fernández-Ibáñez M. Á, Maeiá BM, Pizzuti MG, Minnaard AJ, Feringa BL. Angew. Chem. Int. Ed. 2009; 48: 9339
- 34b Guo Y, Reis MC, Kootstra J, Harutyunyan SR. ACS Catal. 2021; 11: 8476
- 35 Zhang P, Cook AM, Liu Y, Wolf C. J. Org. Chem. 2014; 79: 4167
- 36 Pappoppula M, Cardoso FS. P, Carrett BO, Aponick A. Angew. Chem. Int. Ed. 2015; 54: 15202
- 37 Kubota K, Watanabe Y, Hayama K, Ito H. J. Am. Chem. Soc. 2016; 138: 4338
- 38 Gribble MW. Jr, Guo S, Buchwald SL. J. Am. Chem. Soc. 2018; 140: 5057
- 39 Nallagonda R, Karimov RR. ACS Catal. 2021; 11: 248
- 40 Ketelboeter DR, Pappoppula M, Aponick A. J. Am. Chem. Soc. 2024; 146: 11610
- 41 Somprasong S, Reis MC, Harutyunyan SR. ACS Catal. 2024; 14: 13030
- 42a Chau ST, Lutz JP, Wu K, Doyle AG. Angew. Chem. Int. Ed. 2013; 52: 9153
- 42b Lutz JP, Chau ST, Doyle AG. Chem. Sci. 2016; 7: 4105
- 43 Nallagonda R, Musaev DG, Karimov RR. ACS Catal. 2022; 12: 1818
- 44 Lu J, Li Q, Liang R, Jia Y. Chin. J. Org. Chem. 2023; 43: 1875
- 45 Yang P, Wang Q, Cui B.-H, Zhang X.-D, Liu H, Zhang Y.-Y, Liu J.-L, Huang W.-Y, Liang R.-X, Jia Y.-X. J. Am. Chem. Soc. 2022; 144: 1087
- 46 Day J, Mckeever-Abbas B, Dowden J. Angew. Chem. Int. Ed. 2016; 55: 5809
- 47 Zhang D, Lin L, Yang J, Liu X, Feng X. Angew. Chem. Int. Ed. 2018; 57: 12323