Synthesis 2017; 49(15): 3433-3443
DOI: 10.1055/s-0036-1588871
short review
© Georg Thieme Verlag Stuttgart · New York

Stereoselective SN1-Type Reaction of Enols and Enolates

Andrea Gualandi*
ALMA MATER STUDIORUM University of Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy   Email: [email protected]   Email: [email protected]
,
Luca Mengozzi
ALMA MATER STUDIORUM University of Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy   Email: [email protected]   Email: [email protected]
,
ALMA MATER STUDIORUM University of Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy   Email: [email protected]   Email: [email protected]
› Author Affiliations
Bologna University, Fondazione Del Monte, SLAMM project are acknowledged for financial support to A.G. and L.M.
Further Information

Publication History

Received: 12 May 2017

Accepted: 15 May 2017

Publication Date:
13 June 2017 (online)


This paper is dedicated to the outstanding contribution of Herbert Mayr to physical organic chemistry

Abstract

Stereoselective alkylation of enolates represents a valuable and important procedure for accessing carbon–carbon-bond frameworks in natural and nonnatural product synthesis. Usually, activated electrophilic partners that react through an SN2 mechanism are employed. To overcome the limitations due to reduced reactivity and steric hindrance, SN1-type reactions can be considered a valid and practical alternative. Accessible enolates can be used in stereoselective (diastereo- or enantioselective) reactions with electrophilic carbenium ions, either used as stable reagents or generated in situ from suitable precursors. The results achieved in this active field are summarized in this review.

1 Introduction

2 Alcohols in SN1-Type Reactions with Enolates

2.1 Enantioselective Reactions with Metal Complexes

2.2 Organocatalytic Enantioselective Reactions

3 Alcohols and Alcohol Derivatives in SN1-Type Reactions with Enolates­: Enantioselective Reactions with Metal Enolates

4 Isolated Carbenium Ions in SN1-Type Reactions with Enolates: Enantioselective­ Reactions with Metal Enolates

5 Miscellaneous

6 Conclusion

 
  • References

  • 1 For a nice example, see: http://isites.harvard.edu/icb/icb.do? keyword=k7863.
  • 2 Mayr H. Tetrahedron 2015; 71: 5095
  • 3 Mayr H. Kempf B. Ofial AR. Acc. Chem. Res. 2003; 36: 66
  • 4 Mayr H. Ofial AR. In Carbocation Chemistry . Olah GA. Prakash GK. S. Wiley; Hoboken: 2004. Chap. 13, 331
  • 5 Ammer J. Nolte C. Mayr H. J. Am. Chem. Soc. 2012; 134: 13902
  • 6 Minegishi S. Kobayashi S. Mayr H. J. Am. Chem. Soc. 2004; 126: 5174
  • 7 For Mayr’s concepts applied to organocatalysis, see: Mayr H. Lakhdar S. Maji B. Ofial AR. Beilstein J. Org. Chem. 2012; 8: 1458
  • 8 In previous studies, Mayr defined sN = 1.00 for 2-methylpent-1-ene; then, in successive studies the reference was changed to sN = 1.00 for allyltrimethylsilane, maintaining all the previously determined parameters as unaffected.
  • 9 Sailer CF. Fingerhut BP. Ammer J. Nolte C. Pugliesi I. Mayr H. de Vivie-Riedle R. Riedle E. In Ultrafast Phenomena XVII . Chergui M. Jonas D. Riedle E. Schoenlein RW. Taylor A. Oxford University Press; New York: 2011: 427
  • 10 Mayr H. Breugst M. Ofial AR. Angew. Chem. 2011; 123: 6598
  • 11 Biswas S. Samec JS. M. Chem. Asian J. 2013; 8: 974
    • 12a Emer E. Sinisi R. Guiteras-Capdevila M. Petruzziello D. De Vincentiis F. Cozzi PG. Eur. J. Org. Chem. 2011; 647
    • 12b Biannic B. Aponick A. Eur. J. Org. Chem. 2011; 6605
    • 12c Baeza A. Nájera C. Synthesis 2014; 46: 25
    • 12d Dryzhakov M. Richmond E. Moran J. Synthesis 2016; 48: 935
  • 13 Bandini M. Tragni M. Org. Biomol. Chem. 2009; 7: 1501
  • 14 Mayr H. Henninger J. Eur. J. Org. Chem. 1998; 1919
  • 15 For an example, see: Zhao C. Chen SB. Seidel D. J. Am. Chem. Soc. 2016; 138: 9053 ; and references cited therein
  • 16 Liu PN. Dang L. Wang QW. Zhao SL. Xia F. Ren YJ. Gong XQ. Chen JQ. J. Org. Chem. 2010; 75: 5017
  • 17 Kobayashi S. Ogawa C. Chem. Eur. J. 2006; 12: 5954
  • 19 Vuković VD. Richmond E. Wolf E. Moran J. Angew. Chem. Int. Ed. 2017; 56: 3085

    • Nucleophilicity values of different enolates. For malonates, see:
    • 20a Puente A. He S. Corral-Bautista F. Ofial A. Mayr H. Eur. J. Org. Chem. 2016; 1841

    • For keto esters, see:
    • 20b Corral-Bautista F. Mayr H. Eur. J. Org. Chem. 2015; 7594

    • For aryl acetates, see:
    • 20c Corral-Bautista F. Mayr H. Eur. J. Org. Chem. 2013; 4255
    • 21a Maity AK. Chatterjee PN. Roy S. Tetrahedron 2013; 69: 942
    • 21b Zhang X. Qiu R. Zhou C. Yu J. Li N. Yin S. Xu X. Tetrahedron 2015; 71: 1011
    • 21c Xia F. Zhao ZL. Liu PN. Tetrahedron Lett. 2012; 53: 2828
    • 22a Chatterjee PN. Roy S. Tetrahedron 2012; 68: 3776
    • 22b Stopka T. Niggemann M. Org. Lett. 2015; 17: 1437
    • 23a Gujarathi S. Liu X. Song L. Hendrickson H. Zheng G. Tetrahedron 2014; 70: 5267
    • 23b Mothe SR. Lauw SJ. L. Kothandaraman P. Chan PW. H. J. Org. Chem. 2012; 77: 6937
    • 24a Noji M. Konno Y. Ishi K. J. Org. Chem. 2007; 72: 6161
    • 24b Koppolu SR. Naveen N. Balamurugan R. J. Org. Chem. 2014; 79: 6069
    • 25a Nishibayashi Y. Wakiji I. Hidai M. J. Am. Chem. Soc. 2000; 122: 11019
    • 25b Nishibayashi Y. Wakiji I. Ishii Y. Uemura S. Hidai M. J. Am. Chem. Soc. 2001; 123: 3393
    • 25c Nishibayashi Y. Yoshikawa M. Inada Y. Hidai M. Uemura S. J. Am. Chem. Soc. 2002; 124: 11846
    • 25d Nishibayashi Y. Milton MD. Inada Y. Yoshikawa M. Wakiji I. Hidai M. Uemura S. Chem. Eur. J. 2005; 11: 1433
    • 25e Ammal SC. Yoshikai N. Inada Y. Nishibayashi Y. Nakamura E. J. Am. Chem. Soc. 2005; 127: 9428
  • 26 Inada Y. Nishibayashi Y. Uemura S. Angew. Chem. Int. Ed. 2005; 44: 7715
  • 27 Allen AA. MacMillan DW. C. Chem. Sci. 2012; 3: 633
  • 28 Ikeda M. Miyake Y. Nishibayashi Y. Chem. Eur. J. 2012; 18: 3321
  • 29 Marigo M. Kjærsgaard A. Juhl K. Gathergood N. Jørgensen KA. Chem. Eur. J. 2003; 9: 2359
  • 30 Motoyama K. Ikeda M. Miyake Y. Nishibayashi Y. Organometallics 2012; 31: 3426
  • 31 Shibata M. Ikeda M. Motoyama M. Miyake Y. Nishibayashi Y. Chem. Commun. 2012; 48: 9528
  • 32 Trillo P. Baeza A. Nájera C. Adv. Synth. Catal. 2013; 355: 2815
  • 33 Horn M. Schappele LH. Lang-Wittkowski G. Mayr H. Ofial AR. Chem. Eur. J. 2013; 19: 249
    • 34a Trillo P. Baeza A. Nájera C. Eur. J. Org. Chem. 2012; 2929
    • 34b Trillo P. Baeza A. Nájera C. J. Org. Chem. 2012; 77: 7344
    • 34c Trillo P. Baeza A. Nájera C. ChemCatChem 2013; 5: 1538
  • 35 Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications. Dalko PI. Wiley-VCH; Weinheim: 2013
  • 36 MacMillan DW. C. Nature 2008; 455: 304
  • 37 Melchiorre P. Marigo M. Carlone A. Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138
    • 38a Gualandi A. Cozzi PG. Synlett 2013; 24: 281
    • 38b Gualandi A. Mengozzi L. Manoni E. Cozzi PG. Chem. Rec. 2016; 16: 1228
    • 39a Enders D. Narine AA. Toulgoat F. Bisschops T. Angew. Chem. Int. Ed. 2008; 47: 5661
    • 39b Rueping M. Nachtsheim BJ. Moreth SA. Bolte M. Angew. Chem. Int. Ed. 2008; 47: 593
    • 39c Shaikh R. Mazzanti A. Petrini M. Bartoli G. Melchiorre P. Angew. Chem. Int. Ed. 2008; 47: 8707
    • 39d Cozzi PG. Benfatti F. Zoli L. Angew. Chem. Int. Ed. 2009; 48: 1313
    • 39e Cozzi PG. Benfatti F. Angew. Chem. Int. Ed. 2010; 49: 256
    • 39f Capdevila MG. Benfatti F. Zoli L. Stenta M. Cozzi PG. Chem. Eur. J. 2010; 16: 11237
    • 39g Bergonzini G. Vera S. Melchiorre P. Angew. Chem. Int. Ed. 2010; 49: 9685
    • 39h Sinisi R. Vita MV. Gualandi A. Emer E. Cozzi PG. Chem. Eur. J. 2011; 17: 7404
    • 40a Gualandi A. Emer E. Capdevila MG. Cozzi PG. Angew. Chem. Int. Ed. 2011; 50: 7842
    • 40b Gualandi A. Emma MG. Jacoboni G. Mengozzi L. Cozzi PG. Synlett 2013; 24: 449
    • 40c Gualandi A. Canestrari P. Emer E. Cozzi PG. Adv. Synth. Catal. 2014; 356: 528
    • 40d Gualandi A. Mengozzi L. Giacoboni J. Saulnier S. Ciardi M. Cozzi PG. Chirality 2014; 26: 607
  • 41 Song L. Guo Q.-X. Li X.-C. Tian J. Peng Y.-G. Angew. Chem. Int. Ed. 2012; 51: 1899
    • 42a Akiyama T. Itoh J. Fuchibe K. Adv. Synth. Catal. 2006; 348: 999
    • 42b Akiyama T. Chem. Rev. 2007; 107: 5744
    • 43a Mahlau M. List B. Angew. Chem. Int. Ed. 2013; 52: 518
    • 43b Brak K. Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534
  • 44 Wang P.-S. Zhou X.-L. Gong L.-Z. Org. Lett. 2014; 16: 976
  • 45 Trillo P. Baeza A. Nájera C. Synthesis 2014; 46: 3399
  • 46 Hsiao C.-C. Liao H.-H. Rueping M. Angew. Chem. Int. Ed. 2014; 53: 13258
  • 47 For the pK a values of various phosphoric acid derivatives, see: Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2014; 114: 9047 ; and references cited therein
  • 48 Zhang T. Qiao Z. Wang Y. Zhong N. Liu L. Wang D. Chen Y.-J. Chem. Commun. 2013; 49: 1636
    • 50a Benfatti F. Benedetto E. Cozzi PG. Chem. Asian J. 2010; 5: 2047
    • 50b Armenise N. Dughera S. Gualandi A. Mengozzi L. Barbero M. Cozzi PG. Asian J. Org. Chem. 2015; 4: 337
  • 51 For a key study on SN1-type reactions of titanium enolates, see: Evans DA. Urpí F. Somers TC. Clark JS. Bilodeau MT. J. Am. Chem. Soc. 1990; 112: 8215
    • 52a Romo JM. Gálvez E. Nubiola I. Romea P. Urpí F. Kindred M. Adv. Synth. Catal. 2013; 355: 2781
    • 52b Kennington SC. D. Romo JM. Romea P. Urpí F. Org. Lett. 2016; 18: 3018
  • 53 Valparís JF. Romo JM. Romea P. Urpí F. Kowalski H. Font-Bardia M. Org. Lett. 2015; 17: 3540
  • 54 For a comprehensive discussion, see: Romo JM. Ph.D. Dissertation. University of Barcelona; Spain: 2014
  • 55 Drusan M. Rakovský E. Marek J. Šebesta R. Adv. Synth. Catal. 2015; 357: 1493
  • 56 Némethová I. Sorádová Z. Šebesta R. Synthesis 2017; 49: 2461
    • 57a Maksymowicz RM. Roth PM. C. Fletcher SP. Nat. Chem. 2012; 4: 649
    • 57b You H. Rideau E. Sidera M. Fletcher SP. Nature 2015; 517: 351
  • 58 Metz AE. Berritt S. Dreher SD. Kozlowski MC. Org. Lett. 2012; 14: 760
  • 59 Breugst M. Zipse H. Guthrie JP. Mayr H. Angew. Chem. Int. Ed. 2010; 49: 5165
  • 60 Petruzziello D. Gualandi A. Grilli S. Cozzi PG. Eur. J. Org. Chem. 2012; 6697
  • 61 Westermaier M. Mayr H. Chem. Eur. J. 2008; 14: 1638