Synthesis 2017; 49(11): 2461-2469
DOI: 10.1055/s-0036-1588968
paper
© Georg Thieme Verlag Stuttgart · New York

Electrophilic Trapping of Zirconium Enolates Obtained by Copper-Catalyzed Addition of In Situ Generated Organozirconium Reagents

Ivana Némethová
Comenius University in Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia   Email: radovan.sebesta@fns.uniba.sk
,
Zuzana Sorádová
Comenius University in Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia   Email: radovan.sebesta@fns.uniba.sk
,
Radovan Šebesta*
Comenius University in Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia   Email: radovan.sebesta@fns.uniba.sk
› Author Affiliations
Further Information

Publication History

Received: 01 February 2017

Accepted after revision: 17 February 2017

Publication Date:
10 March 2017 (online)


Abstract

Building complex structures from simple starting materials is important for effective organic synthesis. In this context, domino reactions comprising hydrozirconation of alkenes, their subsequent utilization in a copper-catalyzed conjugate addition to enones, followed by electrophilic trapping of the formed zirconium enolates with activated alkene and carbocations are described. Reactivity of metal enolates was studied by DFT calculations.

Supporting Information

 
  • References

  • 1 Beller M, Bolm C. Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals. Wiley-VCH; Weinheim: 2004
  • 2 Jacobsen EN, Pfaltz A, Yamamoto H. Comprehensive Asymmetric Catalysis. Springer; Berlin: 1999
  • 3 Christoffers J, Koripelly G, Rosiak A, Rössle M. Synthesis 2007; 1279-1279
  • 4 Krause N, Hoffmann-Röder A. Synthesis 2001; 171-171
  • 5 Alexakis A, Bäckvall JE, Krause N, Pàmies O, Diéguez M. Chem. Rev. 2008; 108: 2796-2796
  • 6 Jerphagnon T, Pizzuti MG, Minnaard AJ, Feringa BL. Chem. Soc. Rev. 2009; 38: 1039-1039
  • 7 Alexakis A, Krause N, Woodward S. Copper-Catalyzed Asymmetric Synthesis. Wiley-VCH; Weinheim: 2014
  • 8 Thaler T, Knochel P. Angew. Chem. Int. Ed. 2009; 48: 645-645
  • 9 Muller D, Alexakis A. Chem. Commun. 2012; 48: 12037-12037
  • 10 Galeštoková Z, Šebesta R. Eur. J. Org. Chem. 2012; 6688-6688
  • 11 Tietze LF, Düfert A. Domino Reactions Involving Catalytic Enantioselective Conjugate Additions. In Catalytic Asymmetric Conjugate Reactions. Córdova A. Wiley-VCH; Weinheim: 2010: 321-350
  • 12 Chapman CJ, Frost CG. Synthesis 2007; 1-1
  • 13 Guo H.-C, Ma J.-A. Angew. Chem. Int. Ed. 2006; 45: 354-354
  • 14 Alexakis A, Benhaim C. Eur. J. Org. Chem. 2002; 3221-3221
  • 15 Lopez F, Minnaard AJ, Feringa BL. Acc. Chem. Res. 2007; 40: 179-179
  • 16 Harutyunyan SR, den Hartog T, Geurts K, Minnaard AJ, Feringa BL. Chem. Rev. 2008; 108: 2824-2824
  • 17 Wang S.-Y, Loh T.-P. Chem. Commun. 2010; 46: 8694-8694
  • 18 von Zezschwitz P. Synthesis 2008; 1809-1809
  • 19 Ohmiya H, Yoshida M, Sawamura M. Org. Lett. 2011; 13: 482-482
  • 20 Yoshida M, Ohmiya H, Sawamura M. J. Am. Chem. Soc. 2012; 134: 11896-11896
  • 21 Maksymowicz RM, Bissette AJ, Fletcher SP. Chem. Eur. J. 2015; 21: 5668-5668
  • 22 Dzhemilev UM, Ibragimov AG. Hydrometallation of Unsaturated Compounds. In Modern Reduction Methods. Andersson PG, Munslow IJ. Wiley-VCH; Weinheim: 2008: 447-489
  • 23 Schwartz J, Labinger JA. Angew. Chem., Int. Ed. Engl. 1976; 15: 333-333
  • 24 Hart DW, Schwartz J. J. Am. Chem. Soc. 1974; 96: 8115-8115
  • 25 Roth PM. C, Fletcher SP. Org. Lett. 2015; 17: 912-912
  • 26 Rideau E, Mäsing F, Fletcher SP. Synthesis 2015; 47: 2217-2217
  • 27 Maciver EE, Maksymowicz RM, Wilkinson N, Roth PM. C, Fletcher SP. Org. Lett. 2014; 16: 3288-3288
  • 28 Sidera M, Roth PM. C, Maksymowicz RM, Fletcher SP. Angew. Chem. Int. Ed. 2013; 52: 7995-7995
  • 29 Maksymowicz RM, Sidera M, Roth PM. C, Fletcher SP. Synthesis 2013; 45: 2662-2662
  • 30 Maksymowicz RM, Roth PM. C, Thompson AL, Fletcher SP. Chem. Commun. 2013; 49: 4211-4211
  • 31 Maksymowicz RM, Roth PM. C, Fletcher SP. Nat. Chem. 2012; 4: 649-649
  • 32 You H, Rideau E, Sidera M, Fletcher SP. Nature 2015; 517: 351-351
  • 33 Sidera M, Fletcher SP. Chem. Commun. 2015; 51: 5044-5044
  • 34 Rideau E, Fletcher SP. Beilstein J. Org. Chem. 2015; 11: 2435-2435
  • 35 Braun M, Sacha H. Angew. Chem., Int. Ed. Engl. 1991; 30: 1318-1318
  • 36 Yamago S, Machii D, Nakamura E. J. Org. Chem. 1991; 56: 2098-2098
  • 37 Sasai H, Kirio Y, Shibasaki M. J. Org. Chem. 1990; 55: 5306-5306
  • 38 Yamamoto Y, Maruyama K. Tetrahedron Lett. 1980; 21: 4607-4607
  • 39 Evans DA, McGee LR. Tetrahedron Lett. 1980; 21: 3975-3975
  • 40 Wipf P, Xu W, Smitrovich JH, Lehmann R, Venanzi LM. Tetrahedron 1994; 50: 1935-1935
  • 41 Wipf P, Takahashi H. Chem. Commun. 1996; 2675-2675
  • 42 Buchwald SL, LaMaire SJ, Nielsen RB, Watson BT, King SM. Org. Synth. 1993; 71: 77-77
  • 43 Arnold D, Krainz T, Wipf P. Org. Synth. 2015; 92: 277-277
  • 44 Mayr H, Patz M. Angew. Chem., Int. Ed. Engl. 1994; 33: 938-938
  • 45 Mayr H, Kempf B, Ofial AR. Acc. Chem. Res. 2003; 36: 66-66
  • 46 Appel R, Mayr H. J. Am. Chem. Soc. 2011; 133: 8240-8240
  • 47 Zenz I, Mayr H. J. Org. Chem. 2011; 76: 9370-9370
  • 48 Asahara H, Mayr H. Chem. Asian J. 2012; 7: 1401-1401
  • 49 Sorádová Z, Máziková J, Mečiarová M, Šebesta R. Tetrahedron: Asymmetry 2015; 26: 271-271
  • 50 Germain N, Schlaefli D, Chellat M, Rosset S, Alexakis A. Org. Lett. 2014; 16: 2006-2006
  • 51 Drusan M, Rakovský E, Marek J, Šebesta R. Adv. Synth. Catal. 2015; 357: 1493-1493
  • 52 Corey EJ, Walinsky SW. J. Am. Chem. Soc. 1972; 94: 8932-8932