Synthesis 2017; 49(15): 3183-3214
DOI: 10.1055/s-0036-1588452
review
© Georg Thieme Verlag Stuttgart · New York

Keteniminium Ions: Unique and Versatile Reactive Intermediates for Chemical Synthesis

Gwilherm Evano*, Morgan Lecomte, Pierre Thilmany, Cédric Theunissen
  • Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium   Email: gevano@ulb.ac.be
Our work was supported by the Université libre de Bruxelles (ULB) and the FNRS (CDR J.0058.17 Keteniminium). M.L. and C.T. acknowledge the Fonds pour la formation à la Recherche dans l’Industrie et dans l’Agriculture (F.R.I.A.) for graduate fellowships
Further Information

Publication History

Received: 15 May 2017

Accepted after revision: 16 May 2017

Publication Date:
17 July 2017 (eFirst)

Dedicated to Prof. Herbert Mayr, a truly inspiring chemist, on the occasion of his 70th birthday

Abstract

Keteniminium ions have been demonstrated to be remarkably useful and versatile reactive intermediates in chemical synthesis. These unique heterocumulenes are pivotal electrophilic species involved in a number of efficient and selective transformations. More recently, even more reactive ‘activated’ keteniminium ions bearing an additional electron-withdrawing group on the nitrogen atom have been extensively investigated. The chemistry of these unique reactive intermediates, including representative methods for their in situ generation, will be overviewed in this review article.

1 Introduction

2 The Chemistry of Keteniminium Ions

3 The Chemistry of Activated Keteniminium Ions

4 Keteniminium Ions: Pivotal Intermediates for the Synthesis of Natural and/or Biologically Relevant Molecules

5 Conclusions and Perspectives

 
  • References

  • 1 Reactive Intermediates in Organic Chemistry: Structure, Mechanism and Reactions. Singh MS. Wiley-VCH; Weinheim; 2014
    • 2a Ghosez L. Marchand-Brynaert J. Iminium Salts in Organic Chemistry, Part I. In Advances in Organic Chemistry. Vol. 9 Böhme H. Viehe HG. Wiley; New York; 1976: 421-532
    • 2b Snider BB. Chem. Rev. 1988; 88: 793
    • 2c Zificsak CA. Mulder JA. Hsung RP. Rameshkumar C. Wie L.-L. Tetrahedron 2001; 57: 7575
    • 2d DeKorver KA. Li H. Lohse AG. Hayashi R. Lu Z. Zhang Y. Hsung RP. Chem. Rev. 2010; 110: 5064
    • 2e Evano G. Coste A. Jouvin K. Angew. Chem. Int. Ed. 2010; 49: 2840
    • 2f Madelaine C. Valerio V. Maulide N. Chem. Asian J. 2011; 6: 2224
    • 2g Evano G. Theunissen C. Lecomte M. Aldrichimica Acta 2015; 48: 59
    • 2h Li X. Yan S. Lei Z. Bo P. Chin. J. Org. Chem. 2016; 36: 2530

      For examples of characterization of keteniminium ions, see:
    • 3a Weingaeten H. J. Org. Chem. 1970; 35: 3970
    • 3b Lambrecht J. Zsolnai L. Huttner G. Jochims JC. Chem. Ber. 1982; 115: 172
  • 4 For an example, see: Deyrup JA. Kuta GS. J. Org. Chem. 1978; 43: 501
  • 5 For an example, see: Viehe HG. Buijle R. Fuks R. Merényi R. Oth JM. F. Angew. Chem. Int. Ed. 1967; 6: 77
  • 6 Ghosez L. Haveaux B. Viehe HG. Angew. Chem. Int. Ed. 1969; 8: 454
  • 7 Villalgordo JM. Heimgartner H. Helv. Chim. Acta 1992; 75: 1866
    • 8a Marchand-Brynaert J. Ghosez L. J. Am. Chem. Soc. 1972; 94: 2870
    • 8b Sidani A. Marchand-Brynaert J. Ghosez L. Angew. Chem. Int. Ed. 1974; 13: 267
    • 8c Saimoto H. Houge C. Hesbain-Frisque A.-M. Mockel A. Ghosez L. Tetrahedron Lett. 1983; 24: 2251
  • 9 Falmagne J.-B. Escudero J. Taleb-Sahraoui S. Ghosez L. Angew. Chem. Int. Ed. 1981; 20: 879
  • 10 Charette AB. Grenon M. Can. J. Chem. 2001; 79: 1694

    • For reviews on the activation of amides with triflic anhydride, see:
    • 11a Baraznenok IL. Nenajdenko VG. Balenkova ES. Tetrahedron 2000; 56: 3077
    • 11b Kaiser D. Maulide N. J. Org. Chem. 2016; 81: 4421

      For major references on the use of 2-halopyridines in the electrophilic activation of amides, see:
    • 12a Myers AG. Tom NJ. Fraley ME. Cohen SB. Madar DJ. J. Am. Chem. Soc. 1997; 119: 6072
    • 12b Movassaghi M. Hill MD. J. Am. Chem. Soc. 2006; 128: 14254
    • 12c Movassaghi M. Hill MD. Ahmad OK. J. Am. Chem. Soc. 2007; 129: 10096
  • 13 Marchand-Brynaert J. Ghosez L. J. Am. Chem. Soc. 1972; 94: 2869
  • 14 Potthast A. Rosenau T. Sartori J. Sixta H. Kosma P. Polymer 2003; 44: 7
  • 15 Reactions involving electrophilic activation of non-enolizable amides, which cannot proceed through keteniminium ions, will not be covered in this review article.
  • 16 Charette AB. Chua P. Tetrahedron Lett. 1998; 39: 245
  • 17 Charette AB. Chua P. Synlett 1998; 163
  • 18 Charette AB. Grenon M. Tetrahedron Lett. 2000; 41: 1677
  • 19 Huang P.-Q. Wang Y. Xiao K.-J. Huang Y.-H. Tetrahedron 2015; 71: 4248
  • 20 Charette AB. Chua P. J. Org. Chem. 1998; 63: 908
  • 21 Charette AB. Chua P. Tetrahedron Lett. 1997; 38: 8499
  • 22 Valerio V. Petkova D. Madelaine C. Maulide N. Chem.–Eur. J. 2013; 19: 2606
    • 23a Rens M. Ghosez L. Tetrahedron Lett. 1970; 11: 3765
    • 23b Ghosez L. Angew. Chem. Int. Ed. 1972; 11: 852

      For other representative examples yielding 3-amino-2H-azirines, see:
    • 24a Dietliker K. Heimgartner H. Helv. Chim. Acta 1983; 66: 262
    • 24b Breitenmoser RA. Heimgartner H. Helv. Chim. Acta 2002; 85: 885
  • 25 Bernard C. Ghosez L. J. Chem. Soc., Chem. Commun. 1980; 940
  • 26 Henriet M. Houtekie M. Techy B. Touillaux R. Ghosez L. Tetrahedron Lett. 1980; 21: 223
  • 27 Tona V. de la Torre A. Padmanaban M. Ruider S. González L. Maulide N. J. Am. Chem. Soc. 2016; 138: 8348
  • 28 Ficini J. Barbara C. Tetrahedron Lett. 1966; 7: 6425
  • 29 Ficini J. Lumbroso-Bader N. Pouliquen J. Tetrahedron Lett. 1968; 9: 4139
  • 30 Peng B. Geerdink D. Farès C. Maulide N. Angew. Chem. Int. Ed. 2014; 53: 5462
  • 31 Ghosez L. Notté P. Bernard-Henriet C. Maurin R. Heterocycles 1981; 15: 1179
  • 32 Lumbroso A. Behra J. Kolleth A. Dakas P.-Y. Karadeniz U. Catak S. Sulzer-Mossé S. De Mesmaeker A. Tetrahedron Lett. 2015; 56: 6541
  • 33 Villedieu-Percheron J. Catak S. Zurwerra D. Staiger R. Lachia M. De Mesmaker A. Tetrahedron Lett. 2014; 55: 2446
  • 34 Madelaine C. Valerio V. Maulide N. Angew. Chem. Int. Ed. 2010; 49: 1583
  • 35 Peng B. O’Donovan DH. Jurberg ID. Maulide N. Chem.–Eur. J. 2012; 18: 16292
  • 36 Padmanaban M. Carvalho LC. R. Petkova D. Lee J.-W. Santos AS. Marques MM. B. Maulide N. Tetrahedron 2015; 71: 5994
  • 37 Peng B. Geerdink D. Maulide N. J. Am. Chem. Soc. 2013; 135: 14968

    • For additional examples of reaction that could proceed through intramolecular trapping of an intermediate keteniminium ion with a nucleophile, see:
    • 38a Pelletier G. Charette AB. Org. Lett. 2013; 15: 2290
    • 38b Régnier S. Bechara WS. Charette AB. J. Org. Chem. 2016; 81: 10348
  • 39 Kaiser D. de la Torre A. Shaaban S. Maulide N. Angew. Chem. Int. Ed. 2017; 56: 5921
    • 40a De Poortere M. Marchand-Brynaert J. Ghosez L. Angew. Chem. Int. Ed. 1974; 13: 267

    • Also see:
    • 40b Barbaro G. Battaglia A. Bruno C. Giorgianni P. Guerrini A. J. Org. Chem. 1996; 61: 8480
  • 41 Arrieta A. Cossio FP. Lecea B. J. Org. Chem. 1999; 64: 1831
  • 42 Ghosez L. Bogdan S. Cérésiat M. Frydrych C. Marchand-Brynaert J. Moya Portuguez M. Huber I. Pure Appl. Chem. 1987; 59: 393
    • 43a Urch CJ. Walter GC. Tetrahedron Lett. 1988; 29: 4309
    • 43b Kolleth A. Lumbroso A. Tanriver G. Catak S. Sulzer-Mossé S. De Mesmaker A. Tetrahedron Lett. 2016; 57: 2697
  • 44 Kolleth A. Lumbroso A. Tanriver G. Catak S. Sulzer-Mossé S. De Mesmaker A. Tetrahedron Lett. 2016; 57: 3510
    • 45a Heine H.-G. Hartmann W. Angew. Chem., Int. Ed. Engl. 1981; 20: 782
    • 45b O’Brien JM. Kingsbury JS. J. Org. Chem. 2011; 76: 1662

      For other examples of intermolecular [2+2] cycloadditions with keteniminium ions, see:
    • 46a Hoffman RW. Becherer J. Tetrahedron 1978; 34: 1187
    • 46b Genicot C. Gobeaux B. Ghosez L. Tetrahedron Lett. 1991; 32: 3827
    • 46c Fijter L. Kanschik A. Gerke R. Tetrahedron 2004; 60: 1205
  • 47 Woodward RB. Hoffmann R. The Conservation of Orbital Symmetry. Academic Press; New York; 1969
  • 48 Ding W.-J. Fang D.-C. J. Org. Chem. 2001; 66: 6673
  • 49 Hoornaert C. Hesbain-Frisque AM. Ghosez L. Angew. Chem. Int. Ed. 1975; 14: 569
    • 50a Schmidt C. Sahraoui-Taleb S. Differding E. Dehasse-De Lombaert CG. Ghosez L. Tetrahedron Lett. 1974; 15: 5043
    • 50b Lumbroso A. Catak S. Sulzer-Mossé S. De Mesmaeker A. Tetrahedron Lett. 2014; 55: 5147
    • 50c Lumbroso A. Catak S. Sulzer-Mossé S. De Mesmaeker A. Tetrahedron Lett. 2014; 55: 6721
    • 50d Lumbroso A. Catak S. Sulzer-Mossé S. De Mesmaeker A. Tetrahedron Lett. 2015; 56: 2397
  • 51 Domingo LR. Ríos-Gutiérrez M. Pérez P. Tetrahedron 2015; 71: 2421
  • 52 Markó I. Ronsmans B. Hesbain-Frisque A.-M. Dumas S. Ghosez L. J. Am. Chem. Soc. 1985; 107: 2192
  • 53 Snider BB. Hui RA. H. F. J. Org. Chem. 1985; 50: 5167
  • 54 Brady WT. Giang Y.-SF. Weng L. Dad MM. J. Org. Chem. 1987; 52: 2216
  • 55 Overman LE. Wolfe JP. J. Org. Chem. 2002; 67: 6421
    • 56a Dowd P. Zhang W. J. Org. Chem. 1992; 57: 7163
    • 56b Zhang W. Collins MR. Mahmood K. Dowd P. Tetrahedron Lett. 1995; 36: 2729
  • 57 Delle Monache G. Misti D. Salvatore P. Zappia G. Pierini M. Tetrahedron: Asymmetry 2000; 11: 2653
  • 58 Adam J.-M. Ghosez L. Houk KN. Angew. Chem. Int. Ed. 1999; 38: 2728
  • 59 Houge C. Frisque-Hesbain A.-M. Mockel A. Ghosez L. J. Am. Chem. Soc. 1982; 104: 2920
  • 60 Chen L.-y. Ghosez L. Tetrahedron Lett. 1990; 31: 4467
    • 61a Genicot C. Ghosez L. Tetrahedron Lett. 1992; 33: 7357
    • 61b Ghosez L. Mahuteau-Betzer F. Genicot C. Vallribera A. Cordier J.-F. Chem.–Eur. J. 2002; 8: 3411
  • 62 Marchand-Brynaert J. Ghosez L. Tetrahedron Lett. 1974; 15: 377
  • 63 Mahuteau F. Ding P.-Y. Ghosez L. Helv. Chim. Acta 2005; 88: 2022
    • 64a Huang H. Tang L. Liu Q. Xi Y. He G. Zhu H. Chem. Commun. 2016; 52: 5605
    • 64b Paegle E. Belyakov S. Kirsch G. Arsenyan P. Tetrahedron Lett. 2015; 56: 4554
    • 64c Huang H. Fan J. He G. Yang Z. Jin X. Liu Q. Zhu H. Chem.–Eur. J. 2016; 22: 2532
    • 65a Li H. Hsung RP. Org. Lett. 2009; 11: 4462
    • 65b Singh RR. Pawar SK. Huang M.-J. Liu R.-S. Chem. Commun. 2016; 52: 11434
    • 65c Cheng X. Zhu L. Lin M. Chen J. Huang X. Chem. Commun. 2017; 53: 3745
    • 66a Couty S. Meyer C. Cossy J. Synlett 2007; 2819
    • 66b Li H. Antoline JE. Yang J.-H. Al-Rashid ZF. Hsung RP. New J. Chem. 2010; 34: 1309

      For reviews, see:
    • 67a Evano G. Jouvin K. Coste A. Synthesis 2013; 45: 17
    • 67b Evano G. Gaumont A.-C. Alayrac C. Wrona IE. Giguere JR. Delacroix O. Bayle A. Jouvin K. Theunissen C. Gatignol J. Silvanus AC. Tetrahedron 2014; 70: 1529

    • For representative selected examples, see:
    • 67c Dunetz JR. Danheiser RL. Org. Lett. 2003; 5: 4011
    • 67d Zhang Y. Hsung RP. Tracey MR. Kurtz KC. M. Vera EL. Org. Lett. 2004; 6: 1151
    • 67e Hamada T. Ye X. Stahl SS. J. Am. Chem. Soc. 2008; 130: 833
    • 67f Coste A. Karthikeyan G. Couty F. Evano G. Angew. Chem. Int. Ed. 2009; 48: 4381
    • 67g Jouvin K. Couty F. Evano G. Org. Lett. 2010; 12: 3272
    • 67h Jia W. Jiao N. Org. Lett. 2010; 12: 2000
    • 67i Sueda T. Oshima A. Teno N. Org. Lett. 2011; 13: 3996
    • 67j Jouvin K. Heimburger J. Evano G. Chem. Sci. 2012; 3: 756
    • 67k Souto JA. Becker P. Iglesias A. Muñiz K. J. Am. Chem. Soc. 2012; 134: 15505
    • 67l Demmer CS. Evano G. Synlett 2016; 27: 1873
    • 68a Xu S. Liu J. Hu D. Bi X. Green Chem. 2015; 17: 184
    • 68b Hu L. Xu S. Zhao Z. Yang Y. Peng Z. Yang M. Wang C. Zhao J. J. Am. Chem. Soc. 2016; 138: 13135
    • 68c Huang B. Zheng L. Shen Y. Cui S. Angew. Chem. Int. Ed. 2017; 56: 4565
  • 69 Mulder JA. Kurtz KC. M. Hsung RP. Coverdale H. Frederick MO. Shen L. Zificsak CA. Org. Lett. 2003; 5: 1547
    • 70a Sato AH. Ohashi K. Iwasawa T. Tetrahedron Lett. 2013; 54: 1309
    • 70b Ohashi K. Mihara S. Sato AH. Ide M. Iwasawa T. Tetrahedron Lett. 2014; 55: 632
  • 71 Activated keteniminium ions have been proposed to be able to react with dichloromethane itself. See: Kim SW. Um T.-W. Shin S. Chem. Commun. 2017; 53: 2733
    • 72a Compain G. Jouvin K. Martin-Mingot A. Evano G. Marrot J. Thibaudeau S. Chem. Commun. 2012; 48: 5196
    • 72b Metayer B. Compain G. Jouvin K. Martin-Mingot A. Bachmann C. Marrot J. Evano G. Thibaudeau S. J. Org. Chem. 2015; 80: 3397
    • 73a Ghosh N. Nayak S. Sahoo AK. Chem.–Eur. J. 2013; 19: 725
    • 73b Theunissen C. Metayer B. Henry N. Compain G. Marrot J. Martin-Mingot A. Thibaudeau S. Evano G. J. Am. Chem. Soc. 2014; 136: 12528
    • 73c Nayak S. Ghosh B. Prabagar B. Sahoo AK. Org. Lett. 2015; 17: 5662
  • 74 Yu L. Deng Y. Cao J. Synthesis 2015; 47: 783
  • 75 Grimster NP. Wilton DA. A. Chan LK. M. Godfrey CR. A. Green C. Owen DR. Gaunt MJ. Tetrahedron 2010; 66: 6429
  • 76 Che J. Li Y. Zhang F. Zheng R. Bai Y. Zhu G. Tetrahedron Lett. 2014; 55: 6240
    • 77a Zhang Y. Tetrahedron Lett. 2005; 46: 6483
    • 77b Zhang Y. Tetrahedron 2006; 62: 3917

    • For a similar reaction with gold catalysis, see:
    • 77c Pirovano V. Negrato M. Abbiati G. Dell’Acqua M. Rossi E. Org. Lett. 2016; 18: 4798
  • 78 Ide M. Yauchi Y. Iwasawa T. Eur. J. Org. Chem. 2014; 3262
    • 79a Huang H. He G. Zhu X. Jin X. Qiu S. Zhu H. Eur. J. Org. Chem. 2014; 7174
    • 79b Huang H. Tang L. Han X. He G. Xi Y. Zhu H. Chem. Commun. 2016; 52: 4321
    • 80a Chikugo T. Yauchi Y. Ide M. Iwasawa T. Tetrahedron 2014; 70: 3988
    • 80b Prabagar B. Nayak S. Prasad R. Sahoo AK. Org. Lett. 2016; 18: 3066
  • 81 Theunissen C. Métayer B. Lecomte M. Henry N. Chan H.-C. Compain G. Gérard P. Bachmann C. Mokhtari N. Marrot J. Martin-Mingot A. Thibaudeau S. Evano G. Org. Biomol. Chem. 2017; 15: 4399
  • 82 Chen L. Yu L. Deng Y. Cui Y. Bian G. Cao J. Org. Biomol. Chem. 2016; 14: 564
  • 83 Yabuuchi Y. Kuzuguchi T. Yoshimura T. Matsuo J.-i. Org. Lett. 2016; 18: 4951
  • 84 Laub HA. Evano G. Mayr H. Angew. Chem. Int. Ed. 2014; 53: 4968
  • 85 Mayr H. Kempf B. Ofial AR. Acc. Chem. Res. 2003; 36: 66
  • 86 http://www.cup.lmu.de/oc/mayr/reaktionsdatenbank/fe/showclass/62.

    • For examples, see:
    • 87a Kramer S. Dooleweerdt K. Lindhardt AT. Rottländer M. Skrydstrup T. Org. Lett. 2009; 11: 4208
    • 87b Singh RR. Liu R.-S. Adv. Synth. Catal. 2016; 358: 1421

      For a review on gold-catalyzed cyclization of ynamides, see:
    • 88a Pan F. Shu C. Ye L.-W. Org. Biomol. Chem. 2016; 14: 9456

    • Also see:
    • 88b Ide M. Yauchi Y. Iwasawa T. Eur. J. Org. Chem. 2014; 3262
  • 89 Mulder JA. Hsung RP. Frederick MO. Tracey MR. Zificsak CA. Org. Lett. 2002; 4: 1383
  • 90 Ding R. Li Y. Tao C. Cheng B. Zhai H. Org. Lett. 2015; 17: 3994
  • 91 Giri SS. Lin L.-H. Jadhav PD. Liu R.-S. Adv. Synth. Catal. 2017; 359: 590
    • 92a Frederick MO. Hsung RP. Lambeth RH. Mulder JA. Tracey MR. Org. Lett. 2003; 5: 2663
    • 92b Kurtz KC. M. Frederick MO. Lambeth RH. Mulder JA. Tracey MR. Hsung RP. Tetrahedron 2006; 62: 3928
  • 93 Cheng C. Liu S. Zhu G. Org. Lett. 2015; 17: 1581
  • 94 Egi E. Shimzu K. Kamiya M. Ota Y. Akai S. Chem. Commun. 2015; 51: 380
  • 95 Peng B. Huang X. Xie L.-G. Maulide N. Angew. Chem. Int. Ed. 2014; 53: 8718
  • 96 Kaldre D. Maryasin B. Kaiser D. Gajsek O. González L. Maulide N. Angew. Chem. Int. Ed. 2017; 56: 2212
  • 97 Tona V. Ruider SA. Berger M. Shaaban S. Padmanaban M. Xie L.-G. González L. Maulide N. Chem. Sci. 2016; 7: 6032
  • 98 Shu C. Shen C.-H. Wang Y.-H. Li L. Li T. Lu X. Ye L.-W. Org. Lett. 2016; 18: 4630
  • 99 Zhao Y. Hu Y. Wang C. Li X. Wan B. J. Org. Chem. 2017; 82: 3935
  • 100 Patil DV. Kim SW. Nguyen QH. Kim H. Wang S. Hoang T. Shin S. Angew. Chem. Int. Ed. 2017; 56: 3670
    • 101a Ruan P.-P. Shen C.-H. Li L. Liu C.-Y. Ye L.-W. Org. Chem. Front. 2016; 3: 989
    • 101b Pan F. Li W.-L. Chen X.-M. Shu C. Ruan P.-P. Shen C.-H. Lu X. Ye L.-W. ACS Catal. 2016; 6: 6055
    • 102a Davies PW. Cremonesi A. Martin N. Chem. Commun. 2011; 47: 379

    • Also see:
    • 102b Pan F. Shu C. Ping Y.-F. Pan Y.-F. Ruan P.-P. Fei Q.-R. Ye L.-W. J. Org. Chem. 2015; 80: 10009
  • 103 Li C. Zhang L. Org. Lett. 2011; 13: 1738
    • 104a Xu C.-F. Cu M. Jia Y.-X. Li C.-Y. Org. Lett. 2011; 13: 1556
    • 104b Li C.-W. Pati K. Lin G.-Y. Abu Sohel SM. Hung H.-H. Liu R.-S. Angew. Chem. Int. Ed. 2010; 49: 9891
  • 105 Dos Santos M. Davies PW. Chem. Commun. 2014; 50: 6001
  • 106 Li L. Shu C. Zhou B. Yu Y.-F. Xiao X.-Y. Ye L.-W. Chem. Sci. 2014; 5: 4057
  • 107 Mukherjee A. Dateer RB. Chaudhuri R. Bhunia S. Karad SN. Liu R.-S. J. Am. Chem. Soc. 2011; 133: 15372
  • 108 Gawade SA. Huple DB. Liu R.-S. J. Am. Chem. Soc. 2014; 136: 2978
    • 109a Davies PW. Cremonesi A. Dumitrescu L. Angew. Chem. Int. Ed. 2011; 50: 8931
    • 109b Gillie AD. Reddy RJ. Davies PW. Adv. Synth. Catal. 2016; 358: 226
  • 110 Chen M. Sun N. Chen H. Liu H. Chem. Commun. 2016; 52: 6324
    • 111a Zhou A.-H. He Q. Shu C. Yu Y.-F. Liu S. Zhao T. Zhang W. Lu X. Ye L.-W. Chem. Sci. 2015; 6: 1265
    • 111b Xiao X.-Y. Zhou A.-H. Shu C. Pan F. Li T. Ye L.-W. Chem. Asian J. 2015; 10: 1854
    • 111c Shen W.-B. Xiao X.-Y. Sun Q. Zhou B. Zhu X.-Q. Yan J.-Z. Lu Y. Ye L.-W. Angew. Chem. Int. Ed. 2017; 56: 605
  • 112 Jin H. Huang L. Xie J. Rudolph M. Rominger F. Hashmi AS. K. Angew. Chem. Int. Ed. 2016; 55: 794
  • 113 Zeng Z. Jin H. Xie J. Tian B. Rudolph M. Rominger F. Hashmi AS. K. Org. Lett. 2017; 19: 1020
  • 114 Yu Y. Chen G. Zhu L. Liao Y. Wu Y. Huang X. J. Org. Chem. 2016; 81: 8142
    • 115a Zhu L. Yu Y. Mao Z. Huang X. Org. Lett. 2015; 17: 30
    • 115b Pawar SK. Sahani RL. Liu R.-S. Chem.–Eur. J. 2015; 21: 10843
  • 116 Jin H. Tian B. Song X. Xie J. Rudolph M. Rominger F. Hashmi AS. K. Angew. Chem. Int. Ed. 2016; 55: 12688
  • 117 Wu Y. Zhu L. Yu Y. Luo X. Huang X. J. Org. Chem. 2015; 80: 11407
  • 118 You L. Al-Rashid ZF. Figueroa R. Ghosh SK. Li G. Lu T. Hsung RP. Synlett 2007; 1656
  • 119 Kurtz KC. M. Hsung RP. Zhang Y. Org. Lett. 2006; 8: 231
    • 120a Shindoh N. Takemoto Y. Takasu K. Chem.–Eur. J. 2009; 15: 7026
    • 120b Shindoh N. Kitaura K. Takemoto Y. Takasu K. J. Am. Chem. Soc. 2011; 133: 8470
    • 120c Kuroda Y. Shindoh N. Takemoto Y. Takasu K. Synthesis 2013; 45: 2328
  • 121 Li H. Hsung RP. DeKorver KA. Wei Y. Org. Lett. 2010; 12: 3780
  • 122 Wang X.-N. Ma Z.-X. Deng J. Hsung RP. Tetrahedron Lett. 2015; 56: 3463
  • 123 Schotes C. Mezzetti A. Angew. Chem. Int. Ed. 2011; 50: 3072
  • 124 Enomoto K. Oyama H. Nakada M. Chem.–Eur. J. 2015; 21: 2798
  • 125 Chen L. Cao J. Xu Z. Zheng Z.-J. Cui Y.-M. Xu L.-W. Chem. Commun. 2016; 52: 9574
  • 126 Chen L. Yu L. Deng Y. Zheng Z.-J. Xu Z. Cao J. Xu L.-W. Adv. Synth. Catal. 2016; 358: 480
    • 127a Liu H. Yang Y. Wang S. Wu J. Wang X.-N. Chang J. Org. Lett. 2015; 17: 4472
    • 127b Pawar SK. Vasu D. Liu R.-S. Adv. Synth. Catal. 2014; 356: 2411
  • 128 Wezeman T. Zhong S. Nieger M. Bräse S. Angew. Chem. Int. Ed. 2016; 55: 3823
  • 129 Karad SN. Liu R.-S. Angew. Chem. Int. Ed. 2014; 53: 9072
  • 130 Chen Y.-L. Sharma P. Liu R.-S. Chem. Commun. 2016; 52: 3187
    • 131a Xie L.-G. Niyomchon S. Mota AJ. González L. Maulide N. Nat. Commun. 2016; 7: 10914
    • 131b Chen P. Song C.-X. Wang W.-S. Yu X.-L. Tang Y. RSC Adv. 2016; 6: 80055
  • 132 Wang Y. Song L.-J. Zhang X. Sun J. Angew. Chem. Int. Ed. 2016; 55: 9704
  • 133 Zhang J. Zhang Q. Xia B. Wu J. Wang X.-N. Chang J. Org. Lett. 2016; 18: 3390
  • 134 Dateer RB. Shaibu BS. Liu R.-S. Angew. Chem. Int. Ed. 2012; 51: 113
  • 135 Ammer J. Nolte C. Mayr H. J. Am. Chem. Soc. 2012; 134: 13902
  • 136 Xie L.-G. Shaaban S. Chen X. Maulide N. Angew. Chem. Int. Ed. 2016; 55: 12864
  • 137 Kong Y. Yu L. Fu L. Cao J. Lai G. Cui Y. Hu Z. Wang G. Synthesis 2013; 45: 1975
  • 138 Okitsu T. Nakata K. Nishigaki K. Michioka N. Karatani M. Wada A. J. Org. Chem. 2014; 79: 5914
  • 139 Kong Y. Jiang K. Cao J. Fu L. Yu L. Lai G. Cui Y. Hu Z. Wang G. Org. Lett. 2013; 15: 422
  • 140 Jaimes MC. B. Weingand V. Rominger F. Hashimi AS. K. Chem.–Eur. J. 2013; 19: 12504
  • 141 Chen X. Shen D. Wang Q. Yang Y. Yu B. Chem. Commun. 2015; 51: 13957
  • 142 Adcock HV. Langer T. Davies PW. Chem.–Eur. J. 2014; 20: 7262
  • 143 Fujino D. Yorimitsu H. Osuka A. J. Am. Chem. Soc. 2014; 136: 6255
  • 144 Zhou B. Li L. Zhu X.-Q. Yan J.-Z. Guo Y.-L. Ye L.-W. Angew. Chem. Int. Ed. 2017; 56: 4015
    • 145a Kramer S. Friis SD. Xin Z. Odabachian Y. Skrydstrup T. Org. Lett. 2011; 13: 1750
    • 145b Liu J. Chen M. Zhang L. Liu Y. Chem.–Eur. J. 2015; 21: 1009
    • 145c Hashmi AS. K. Schuster AM. Zimmer M. Rominger F. Chem.–Eur. J. 2011; 17: 5511
    • 146a Qi R. Wang X.-N. DeKorver KA. Tang Y. Wang C.-C. Li Q. Li H. Lv M.-C. Yu Q. Hsung RP. Synthesis 2013; 45: 1749
    • 146b Wang X.-N. Hsung RP. Qi R. Fox SK. Lv M.-C. Org. Lett. 2013; 15: 2514
  • 147 Zhang Y. Hsung RP. Zhang X. Huang J. Slafer BW. Davis A. Org. Lett. 2005; 7: 1047
    • 148a Hashmi AS. K. Pankajakshan S. Rudolph M. Enns E. Bander T. Rominger F. Frey W. Adv. Synth. Catal. 2009; 351: 2855
    • 148b Kiruthika SE. Nandakumar A. Perumal PT. Org. Lett. 2014; 16: 4424
    • 148c Yamoaka Y. Yoshida T. Shinozaki M. Yamada K.-I. Takasu K. J. Org. Chem. 2015; 80: 957
    • 148d Pirwerdjan R. Becker P. Bolm C. Org. Lett. 2016; 18: 3307
  • 149 Zheng N. Chang Y.-Y. Zhang L.-J. Gong J.-X. Yang Z. Chem. Asian J. 2016; 11: 371
    • 150a Marion F. Coulomb J. Courillon C. Fensterbank L. Malacria M. Org. Lett. 2004; 6: 1509
    • 150b Marion F. Coulomb J. Servais A. Courillon C. Fensterbank L. Malacria M. Tetrahedron 2006; 62: 3856
    • 150c Couty S. Meyer C. Cossy J. Angew. Chem. Int. Ed. 2006; 45: 6726
    • 150d Yeh M.-CP. Liang C.-J. Chen H.-F. Weng Y.-T. Adv. Synth. Catal. 2015; 357: 3242
    • 150e Zhong C.-Z. Tung P.-T. Chao T.-H. Yeh M.-CP. J. Org. Chem. 2017; 82: 481
    • 150f Heinrich CF. Fabre I. Miesch L. Angew. Chem. Int. Ed. 2016; 55: 5170
    • 151a Tokimizu Y. Wieteck M. Rudolph M. Oishi S. Fujii N. Hashmi AS. K. Ohno H. Org. Lett. 2015; 17: 604
    • 151b Poulokhtine A. Popik VV. J. Am. Chem. Soc. 2007; 129: 12062
    • 151c Poulokhtine A. Rassadin V. Kuzmin A. Popik VV. J. Org. Chem. 2010; 75: 5953
  • 152 Garcia P. Harrak Y. Diab L. Cordier P. Ollivier C. Gandon V. Malacria M. Fensterbank L. Aubert C. Org. Lett. 2011; 13: 2952
  • 153 Yeh M.-CP. Shiue Y.-S. Lin H.-H. Yu T.-Y. Hu T.-C. Hong J.-J. Org. Lett. 2016; 18: 2407
  • 154 Yang L.-Q. Wang K.-B. Li C.-Y. Eur. J. Org. Chem. 2013; 2775
  • 155 Li L. Zhou B. Wang Y.-W. Shu C. Pan Y.-F. Lu X. Ye L.-W. Angew. Chem. Int. Ed. 2015; 54: 8245
  • 156 Wang K.-B. Ran R.-Q. Xiu S.-D. Li C.-Y. Org. Lett. 2013; 15: 2374
    • 157a Vasu D. Hung H.-H. Bhunia S. Gawade SA. Das A. Liu R.-S. Angew. Chem. Int. Ed. 2011; 50: 6911
    • 157b Dateer RB. Pati K. Liu R.-S. Chem. Commun. 2012; 48: 7200
    • 157c Pan F. Liu S. Shu C. Lin R.-K. Yu Y.-F. Zhou J.-M. Ye L.-W. Chem. Commun. 2014; 50: 10726
  • 158 Shu C. Wang Y.-H. Zhou B. Li X.-L. Ping Y.-F. Lu X. Ye L.-W. J. Am. Chem. Soc. 2015; 137: 9567
  • 159 Shu C. Wang Y.-H. Shen C.-H. Ruan P.-P. Lu X. Ye L.-W. Org. Lett. 2016; 18: 3254
    • 160a Tokimizu Y. Oishi S. Fujii N. Ohno H. Org. Lett. 2014; 16: 3138
    • 160b Shen C.-H. Pan Y. Yu Y.-F. Wang Z.-S. He W. Li T. Ye L.-W. J. Organomet. Chem. 2015; 795: 63
  • 161 Xin S. Kramer S. Overgaard J. Skrydstrup T. Chem.–Eur. J. 2014; 20: 7926
  • 162 Karad SN. Bhunia S. Liu R.-S. Angew. Chem. Int. Ed. 2012; 51: 8722
  • 163 Kramer S. Odabachian Y. Overgaard J. Rottländer M. Gagosz F. Skrydstrup T. Angew. Chem. Int. Ed. 2011; 50: 5090
  • 164 Adcock HV. Chatzopoulou E. Davies PW. Angew. Chem. Int. Ed. 2015; 54: 15525
  • 165 Lecomte M. Evano G. Angew. Chem. Int. Ed. 2016; 55: 4547
  • 166 Grandguillot J.-C. Rouessac F. Tetrahedron 1991; 47: 5133
    • 167a Ghosez L. Marko I. Hesbain-Frisque A.-M. Tetrahedron Lett. 1986; 27: 5211
    • 167b Cholerton TJ. Collington EW. Finch H. Williams D. Tetrahedron Lett. 1988; 29: 3369
    • 167c Chen L.-Y. Ghosez L. Tetrahedron: Asymmetry 1991; 2: 1181
    • 167d Irie O. Shishido K. Chem. Lett. 1995; 53
    • 167e Depré D. Chen L.-Y. Ghosez L. Tetrahedron 2003; 59: 6797
    • 167f Lachia M. Jung PM. J. De Mesmaeker A. Tetrahedron Lett. 2012; 53: 4514
    • 167g Lachia M. Dakas P.-Y. De Mesmaeker A. Tetrahedron Lett. 2014; 55: 6577
    • 167h Lachia M. Christian H. De Mesmaeker A. Bioorg. Med. Chem. Lett. 2014; 24: 2123
  • 168 Shim P.-J. Kim H.-D. Tetrahedron Lett. 1998; 39: 9517