Synlett 2023; 34(12): 1289-1308
DOI: 10.1055/s-0042-1751444
account
Special Issue Honoring Masahiro Murakami’s Contributions to Science

Recent Advances in Dual Triplet Ketone/Transition-Metal Catalysis

Valeriia Iziumchenko
,
Vladimir Gevorgyan
We thank the National Institutes of Health (GM120281), the National Science Foundation (CHE-1955663), and the Welch Foundation (Chair, AT-0041) for financial support.


This Account is dedicated to Professor Masahiro Murakami’s excellent contributions to science.

Abstract

Dual light-excited ketone/transition-metal catalysis is a rapidly developing field of photochemistry. It allows for versatile functionalizations of C–H or C–X bonds enabled by triplet ketone acting as a hydrogen-atom-abstracting agent, a single-electron acceptor, or a photosensitizer. This review summarizes recent developments of synthetically useful transformations promoted by the synergy between triplet ketone and transition-metal catalysis.

1 Introduction

2 Triplet Ketone Catalysis via Hydrogen Atom Transfer

2.1 Triplet Ketones with Nickel Catalysis

2.2 Triplet Ketones with Copper Catalysis

2.3 Triplet Ketones with Other Transition-Metal Catalysis

3 Triplet Ketone Catalysis via Single-Electron Transfer

4 Triplet Ketone Catalysis via Energy Transfer

5 Conclusions



Publication History

Received: 30 January 2023

Accepted after revision: 21 March 2023

Article published online:
25 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Selected reviews:
    • 1a Fagnoni M, Dondi D, Ravelli D, Albini A. Chem. Rev. 2007; 107: 2725
    • 1b Ravelli D, Dondi D, Fagnoni M, Albini A. Chem. Soc. Rev. 2009; 38: 1999
    • 1c Ravelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2013; 42: 97
    • 1d Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 1e Sideri IK, Voutyritsa E, Kokotos CG. Org. Biomol. Chem. 2018; 16: 4596
    • 1f Dantas JA, Correia JT. M, Paixão MW, Corrêa AG. ChemPhotoChem 2019; 3: 506
  • 2 Elliott LD, Kayal S, George MW, Booker-Milburn K. J. Am. Chem. Soc. 2020; 142: 14947
  • 3 Hassan MM, Olaoye OO. Molecules 2020; 25: 2285
  • 4 Turro NJ, Ramamurthy V, Ramamurthy V, Scaiano JC. In Principles of Molecular Photochemistry: An Introduction . Stiefel J. University Science Books; Sausalito: 2009: 231
  • 5 Wagner PJ. Top. Curr. Chem. 1976; 66: 1

    • Selected reviews:
    • 6a Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2056
    • 6b Ye Z, Lin Y.-M, Gong L. Eur. J. Org. Chem. 2021; 5545
    • 6c Cao H, Tang X, Tang H, Yuan Y, Wu J. Chem Catal. 2021; 1: 523
    • 6d Gkizis PL. Eur. J. Org. Chem. 2022; e202201139
    • 6e Capaldo L, Ravelli D, Fagnoni M. Chem. Rev. 2022; 122: 1875
    • 6f Holmberg-Douglas N, Nicewicz DA. Chem. Rev. 2022; 122: 1925
    • 6g Golden DL, Suh S.-E, Stahl SS. Nat. Rev. Chem. 2022; 6: 405
  • 7 Fujiya A, Nobuta T, Yamaguchi E, Tada N, Miura T, Itoh A. RSC Adv. 2015; 5: 39539
    • 8a Schaefer CG, Peters KS. J. Am. Chem. Soc. 1980; 102: 7566
    • 8b Yamashita T, Yasuda M, Watanabe M, Kojima R, Tanabe K, Shima K. J. Org. Chem. 1996; 61: 6438
    • 8c Bertrand S, Glapski C, Hoffmann N, Pete J.-P. Tetrahedron Lett. 1999; 40: 3169
    • 8d Harakat D, Pesch J, Marinkovic S, Hoffmann N. Org. Biomol. Chem. 2006; 4: 1202
    • 8e Hoffmann N. Synthesis 2016; 48: 1782
    • 8f Li L, Mu X, Liu W, Wang Y, Mi Z, Li C.-J. J. Am. Chem. Soc. 2016; 138: 5809
    • 8g Tripathi CB, Ohtani T, Corbett MT, Ooi T. Chem. Sci. 2017; 8: 5622
    • 8h Cervantes-González J, Vosburg DA, Mora-Rodriguez SE, Vázquez MA, Zepeda LG, Villegas Gómez C, Lagunas-Rivera S. ChemCatChem 2020; 12: 3811
    • 9a Leigh WJ, Arnold DR, Humphreys RW. R, Wong PC. Can. J. Chem. 1980; 58: 2537
    • 9b Timpe H.-J, Kronfeld K.-PJ. Photochem. Photobiol. A 1989; 46: 253
    • 10a Albini A. Synthesis 1981; 249
    • 10b Perez-Prieto J, Galian RE, Miranda MA. Mini Rev. Org. Chem. 2006; 3: 117
    • 10c Tröster A, Alonso R, Bauer A, Bach T. J. Am. Chem. Soc. 2016; 138: 7808
    • 10d Poplata S, Tröster A, Zou Y.-Q, Bach T. Chem. Rev. 2016; 116: 9748
    • 10e Iyer A, Clay A, Jockusch S, Sivaguru J. J. Phys. Org. Chem. 2017; 30: e3738
    • 10f Neveselý T, Daniliuc CG, Gilmour R. Org. Lett. 2019; 21: 9724
    • 10g Strieth-Kalthoff F, Glorius F. Chem 2020; 6: 1888
  • 11 Aloïse S, Ruckebusch C, Blanchet L, Réhault J, Buntinx G, Huvenne J.-P. J. Phys. Chem. A 2008; 112: 224
    • 12a Kearns DR, Case WA. J. Am. Chem. Soc. 1966; 88: 5087
    • 12b Arnold DR. Adv. Photochem. 1968; 6: 301
    • 12c Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Chem. Soc. Rev. 2018; 47: 7190
  • 13 Zhu DL, Young DJ, Li HX. Synthesis 2020; 52: 3493
  • 14 Chow YL, Buono-Core GE, Lee CW, Scaiano JC. J. Am. Chem. Soc. 1986; 108: 7620
  • 15 Almansa A, Jardel D, Massip S, Tassaing T, Schatz C, Domergue J, Molton F, Duboc C, Vincent J.-M. J. Org. Chem. 2022; 87: 11172
  • 16 Shen Y, Gu Y, Martin R. J. Am. Chem. Soc. 2018; 140: 12200
    • 17a Börjesson M, Moragas T, Martin R. J. Am. Chem. Soc. 2016; 138: 7504
    • 17b Terrett JA, Cuthbertson JD, Shurtleff VW, MacMillan DW. C. Nature 2015; 524: 330
  • 18 Bonciolini S, Noël T, Capaldo L. Eur. J. Org. Chem. 2022; e202200417
  • 19 Xue X.-S, Ji P, Zhou B, Cheng J.-P. Chem. Rev. 2017; 117: 8622
  • 20 Dewanji A, Krach PE, Rueping M. Angew. Chem. Int. Ed. 2019; 58: 3566
  • 21 Sanjose-Orduna J, Silva RC, Raymenants F, Reus B, Thaens J, de Oliveira KT, Noël T. Chem. Sci. 2022; 13: 12527
  • 22 Krach PE, Dewanji A, Yuan T, Rueping M. Chem. Commun. 2020; 56: 6082
  • 23 Ren C.-C, Wang T.-Q, Zhang Y, Peng D, Liu X.-Q, Wu Q.-A, Liu X.-F, Luo S.-P. ChemistrySelect 2021; 6: 2523
  • 24 Schirmer TE, Wimmer A, Weinzierl FW. C, König B. Chem. Commun. 2019; 55: 10796
  • 25 Ishida N, Masuda Y, Imamura Y, Yamazaki K, Murakami M. J. Am. Chem. Soc. 2019; 141: 19611
  • 26 Cao S, Hong W, Ye Z, Gong L. Nat. Commun. 2021; 12: 2377
  • 27 Campbell MW, Yuan M, Polites VC, Gutierrez O, Molander GA. J. Am. Chem. Soc. 2021; 143: 3901
  • 28 Viehe HG, Janousek Z, Merenyi R, Stella L. Acc. Chem. Res. 1985; 18: 148
  • 29 Luridiana A, Mazzarella D, Capaldo L, Rincon JA, Garcia-Losada P, Mateos C, Frederick MO, Nuno M, Jan Buma W, Noël T. ACS Catal. 2022; 12: 11216
  • 30 Ishida N, Masuda Y, Uemoto S, Murakami M. Chem. Eur. J. 2016; 22: 6524
  • 31 Abadie B, Jardel D, Pozzi G, Toullec P, Vincent J.-M. Chem. Eur. J. 2019; 25: 16120
  • 32 Li YJ, Lei M, Gong L. Nat. Catal. 2019; 2: 1016
  • 33 Zhang S, Cao S, Lin Y.-M, Sha L, Lu C, Gong L. Chin. J. Catal. 2022; 43: 564
  • 34 Fan W, Zhao X, Deng Y, Chen P, Wang F, Liu G. J. Am. Chem. Soc. 2022; 144: 21674
  • 35 Zhang W, Wang F, McCann SD, Wang D, Chen P, Stahl SS, Liu G. Science 2016; 353: 1014
  • 36 Wang L, Wang T, Cheng G.-J, Li X, Wei J.-J, Guo B, Zheng C, Chen G, Ran C, Zheng C. ACS Catal. 2020; 10: 7543
  • 37 Niu L, Jiang C, Liang Y, Liu D, Bu F, Shi R, Chen H, Chowdhury AD, Lei A. J. Am. Chem. Soc. 2020; 142: 17693
  • 38 Zhou MJ, Zhang L, Liu G, Xu C, Huang Z. J. Am. Chem. Soc. 2021; 143: 16470
  • 39 Masuda Y, Ishida N, Murakami M. Eur. J. Org. Chem. 2016; 5822
  • 40 Zhu D.-L, Wu Q, Young DJ, Wang H, Ren Z.-G, Li H.-X. Org. Lett. 2020; 22: 6832
  • 41 Abadie B, Jonusauskas G, McClenaghan ND, Toullec PY, Vincent J.-M. Org. Biomol. Chem. 2021; 19: 5800
  • 42 Zhu D.-L, Jiang S, Wu Q, Wang H, Chai L.-L, Li H.-Y, Li H.-X. Org. Lett. 2021; 23: 160
  • 43 Jiang S, Zhang Z.-T, Young DJ, Chai L.-L, Wu Q, Li H.-X. Org. Chem. Front. 2022; 9: 1437
  • 44 Ding W, Lu LQ, Zhou QQ, Wei Y, Chen JR, Xiao WJ. J. Am. Chem. Soc. 2017; 139: 63
  • 45 Zhu D.-L, Li H.-X, Xu Z.-M, Li H.-Y, Young DJ, Lang J.-P. Org. Chem. Front. 2019; 6: 2353
  • 46 Welin ER, Le C, Arias-Rotondo DM, McCusker JK, MacMillan DW. C. Science 2017; 355: 380
  • 47 Zhu D.-L, Xu R, Wu Q, Li H.-Y, Lang J.-P, Li H.-X. J. Org. Chem. 2020; 85: 9201
  • 48 Zhu D.-L, Jiang S, Wu Q, Wang H, Li H.-Y, Li H.-X. Org. Lett. 2021; 23: 8327