Subscribe to RSS
DOI: 10.1055/s-0041-1738451
Synthesis and Cytotoxic Evaluation of 2-Aryl-7,8-dihydroquinolin-6(5H)-ones
We acknowledge Consejo Nacional de Ciencia y Tecnología (grant A1-S-16584) and Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (grant IN204619) for financial support. D.D.B. thanks Consejo Nacional de Ciencia y Tecnología for a Ph.D. fellowship (CVU 788219).
Abstract
Herein we present a facile four-step synthetic method for the synthesis of novel 2-aryl-substituted 7,8-dihydroquinolin-6(5H)-ones as cytotoxic agents. The key step was the use of Mannich salts derived from acetophenones as a Michael acceptor in the reaction with cyclohexane-1,4-dione monoethylene acetal to give 1,5-dicarbonyl compounds that were treated with ammonium acetate to give the 7,8-dihydroquinolin-6(5H)-ones. The cytotoxic activity of the synthesized compounds was evaluated against seven cell lines. The observed data showed good selectivity for chronic myeloid leukemia line K-562. The synthetic route was simple and applicable to various functional group containing substrates. These types of compounds may be utilized as lead compounds in cancer research and drug discovery.
Key words
7,8-dihydroquinolin-6(5H)-one - cytotoxic test - Mannich salts - leukemia - K-562 cell lineSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0041-1738451.
- Supporting Information
Publication History
Received: 29 April 2023
Accepted after revision: 10 July 2023
Article published online:
28 August 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Iribarra J, Vásquez D, Theoduloz C, Benites J, Ríos D, Valderrama JA. Molecules 2012; 17: 11616
- 2 Kantevari S, Patpi SR, Sridhar B, Yogeeswari P, Sriram D. Bioorg. Med. Chem. Lett. 2011; 21: 1214
- 3 Goswami L, Gogoi S, Gogoi J, Boruah RK, Boruah RC, Gogoi P. ACS Comb. Sci. 2016; 18: 253
- 4 Kantevari S, Patpi SR, Addla D, Putapatri SR, Sridhar B, Yogeeswari P, Sriram D. ACS Comb. Sci. 2011; 13: 427
- 5 Valderrama JA, Ibacache A, Rodriguez JA, Theoduloz C, Benites J. Eur. J. Med. Chem. 2011; 46: 3398
- 6 Kundu A, Bhattacharyya B, Dhara K, Paul S, Majumder I, Kundu R. New J. Chem. 2020; 44: 4898
- 7 Marvadi SK, Krishna VS, Surineni G, Srilakshmi Reshma R, Sridhar B, Sriram D, Kantevari S. Bioorg. Chem. 2020; 96: 103626
- 8 Ghera E, Ben David Y, Rapoport H. J. Org. Chem. 1981; 46: 2059
- 9 Remers WA, Gibs GJ, Pidacks C, Weiss MJ. J. Org. Chem. 1971; 36: 279
- 10 Remers WA, Gibs GJ, Weiss MJ. J. Heterocycl. Chem. 1971; 8: 1083
- 11 Sotnik SO, Subota AI, Kliuchynskyi AY, Yehorov DV, Lytvynenko AS, Rozhenko AB, Kolotilov SV, Ryabukhin SV, Volochnyuk DM. J. Org. Chem. 2021; 86: 7315
- 12 Zou N, Lan J.-X, Yan G.-G, Liang C, Su G.-F, Mo D.-L. Org. Lett. 2020; 22: 8446
- 13 Kozikowski AP, Reddy ER, Miller CP. J. Chem. Soc., Perkin Trans. 1 1990; 195
- 14 Campeau L.-C, Schipper DJ, Fagnou K. J. Am. Chem. Soc. 2008; 130: 3266
- 15 Schipper DJ, Campeau L.-C, Fagnou K. Tetrahedron 2009; 65: 3155
- 16 Andersson H, Sainte-Luce Banchelin T, Das S, Olsson R, Almqvist F. Chem. Commun. 2010; 46: 3384
- 17 Yang J, Liu S, Zheng J.-F, Zhou J. Eur. J. Org. Chem. 2012; 2012: 6248
- 18 Vasudevan Sumesh R, Shylaja A, Ranjith Kumar R, Almansour AI, Suresh Kumar R. Tetrahedron Lett. 2018; 59: 4086
- 19 Müller M.-A, Ganić A, Hörmann E, Kaiser S, Maywald M, Roseblade SJ, Schrems MG, Schumacher A, Woodmansee D, Pfaltz A. Helv. Chim. Acta 2020; 103: e2000181
- 20 Brown HL, Buchanan GL, Curran AC. W, McLay GW. Tetrahedron 1968; 24: 4565
- 21 Zhuo J.-C, Schenk K. Helv. Chim. Acta 2002; 85: 1276
- 22 Aulakh VS, Ciufolini MA. J. Org. Chem. 2009; 74: 5750
- 23 Kazarinova TD, Markova LI, Kharchenko VG. Chem. Heterocycl. Compd. 1994; 30: 567
- 24 Kadutskii AP, Kozlov NG. Russ. J. Org. Chem. 2006; 42: 1388
- 25 Tudhope SR, Bellamy JA, Ball A, Rajasekar D, Azadi-Ardakani M, Meera HS, Gnanadeepam JM, Saiganesh R, Gibson F, He L, Behrens CH, Underiner G, Marfurt J, Favre N. Org. Process Res. Dev. 2012; 16: 635
- 26 Nishimura N, Yoza K, Kobayashi K. J. Am. Chem. Soc. 2010; 132: 777
- 27 Budke B, Tueckmantel W, Miles K, Kozikowski AP, Connell PP. ChemMedChem 2019; 14: 1031
- 28 Lassoie M.-A, Broeders F, Collart P, Defrère L, de Laveleye-Defais F, Demaude T, Gassama A, Guillaumet G, Hayez J.-C, Kiss L, Knerr L, Nicolas J.-M, Norsikian S, Quéré L, Routier S, Verbois V, Provins L. Bioorg. Med. Chem. Lett. 2007; 17: 142
- 29 Kozlov NG, Basalaeva LI. Russ. J. Org. Chem. 2003; 39: 718
- 30 Rashidi M, Seghatoleslam A, Namavari M, Amiri A, Fahmidehkar MA, Ramezani A, Eftekhar E, Hosseini A, Erfani N, Fakher S. Int. J. Cancer Manage. 2017; 10: e8633
- 31 Kaiser S, Smidt SP, Pfaltz A. Angew. Chem. Int. Ed. 2006; 45: 5194
- 32 Lam HW, Murray GJ, Firth JD. Org. Lett. 2005; 7: 5743
- 33 Knott EB. J. Chem. Soc. 1947; 1190
- 34 Dimmock JR, Patil SA, Leek DM, Warrington RC, Fang WD. Eur. J. Med. Chem. 1987; 22: 545
- 35 Padfield EM, Tomlinson ML. J. Chem. Soc. 1950; 2272
- 36 Buchanan GL, Curran AC. W, McCrae JM, McLay GW. Tetrahedron 1967; 23: 4729
- 37 Blicke FF, Johnson WK. J. Am. Pharm. Assoc., Sci. Ed. 1956; 45: 440
- 38 Constable EC, Eich O, Housecroft CE, Rees DC. Inorg. Chim. Acta 2000; 300–302: 158
- 39 Ginsberg HF, Lederman I, Papa D. J. Am. Chem. Soc. 1953; 75: 4587
- 40 Lehmann F, Pilotti Å, Luthman K. Mol. Diversity 2003; 7: 145
- 41 Taylor ED, Lewis Nobles W. J. Am. Pharm. Assoc., Sci. Ed. 1960; 49: 317
- 42 Kourkoulos D, Karakus C, Hertel D, Alle R, Schmeding S, Hummel J, Risch N, Holder E, Meerholz K. Dalton Trans. 2013; 42: 13612
- 43 Kumar D, Kommi DN, Chopra P, Ansari MI, Chakraborti AK. Eur. J. Org. Chem. 2012; 2012: 6407