Synlett 2021; 32(06): 561-572
DOI: 10.1055/s-0040-1707284
account

Designing Rh(I)-Half-Sandwich Catalysts for Alkyne [2+2+2] Cycloadditions

Laura Orian
a   Dipartimento di Scienze Chimiche Università degli Studi di Padova, Via Marzolo 1 35131 Padova, Italy   Email: laura.orian@unipd.it
,
b   Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands   Email: f.m.bickelhaupt@vu.nl
c   Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
› Author Affiliations
This work has been performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme; in particular, L.O. gratefully acknowledges the support of VU Amsterdam and SURFsara (The Netherlands). F.M.B. thanks the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).


Abstract

Metal-mediated [2+2+2] cycloadditions of unsaturated molecules to cyclic and polycyclic organic compounds are a versatile synthetic route affording good yields and selectivity under mild conditions. In the last two decades, in silico investigations have unveiled important details about the mechanism and the energetics of the whole catalytic cycle. Particularly, a number of computational studies address the topic of half-sandwich catalysts which, due to their structural fluxionality, have been widely employed, since the 1980s. In these organometallic species, the metal is coordinated to an aromatic ring, typically the ubiquitous cyclopentadienyl anion, C5H5 (Cp) or to the Cp moiety of a larger polycyclic aromatic ligand (Cp′). During the catalytic process, the metal continuously ‘slips’ on the ring, changing its hapticity. This phenomenon of metal slippage and its implications for the catalyst’s performance are discussed in this work, referring to the most important computational mechanistic studies reported in literature for Rh(I) half-metallocenes, with the purpose of providing hints for a rational design of this class of compounds.

1 Introduction

2 Mechanism of Metal-Catalyzed Acetylene [2+2+2] Cycloaddition to Benzene and the Problem of the Indenyl Effect

2.1 Acetylene-Acetonitrile [2+2+2] Co-cycloaddition to 2-Methylpyridine: Evidence of the Indenyl Effect

2.2 Heteroaromatic Catalysts and the Evidence of a Reverse Indenyl Effect

2.3 Booth’s Mechanistic Hypothesis and the Evidence of the Indenyl Effect

3 Structure–Reactivity Correlation: The Slippage-Span Model

4 Conclusions and Perspectives



Publication History

Received: 07 July 2020

Accepted after revision: 04 August 2020

Article published online:
09 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Vollhardt KP. C. Acc. Chem. Res. 1977; 10: 1
  • 2 Tanaka K. Transition-Metal-Mediated Aromatic Ring Construction. Wiley; Hoboken: 2013
  • 3 Berthelot M. Ann. Chem. Pharm. 1866; 139: 272
  • 4 Dower WV, Vollhardt KP. C. J. Am. Chem. Soc. 1982; 104: 6878
  • 5 Houk KN, Gandour RW, Strozier RW, Rondan NG, Paquette LA. J. Am. Chem. Soc. 1979; 101: 6797
  • 6 Back MH. Can. J. Chem. 1971; 49: 2199
  • 7 Benson SW. Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters. J. Wiley; New York: 1968
  • 8 Reppe W, Schlichting O, Klager K, Toepel T. Justus Liebigs Ann. Chem. 1948; 560: 1
  • 9 Ceccon A, Gambaro A, Santi S, Venzo A. J. Mol. Catal. 1991; 69: L1
  • 10 Santi S, Durante C, Donoli A, Bisello A, Orian L, Ganis P, Ceccon A, Benetollo F. Organometallics 2010; 29: 2046
  • 11 Santi S, Durante C, Donoli A, Bisello A, Orian L, Ceccon A, Crociani L, Benetollo F. Organometallics 2009; 28: 3319
  • 12 Santi S, Orian L, Donoli A, Durante C, Bisello A, Di Valentin M, Ganis P, Benetollo F, Ceccon A. J. Organomet. Chem. 2008; 693: 3797
  • 13 Santi S, Orian L, Durante C, Bisello A, Benetollo F, Crociani L, Ganis P, Ceccon A. Chem. Eur. J. 2007; 13: 1955
  • 14 Hart-Davis AJ, White C, Mawby RJ. Inorg. Chim. Acta 1970; 4: 441
  • 15 Basolo F. Coord. Chem. Rev. 1982; 43: 7
  • 16 Rerek ME, Ji L.-N, Basolo F. J. Chem. Soc., Chem. Commun. 1983; 1208
  • 17 Rerek ME, Basolo F. J. Am. Chem. Soc. 1984; 106: 5908
  • 18 Veiros LF. Organometallics 2000; 19: 3127
  • 19 Calhorda MJ, Romão CC, Veiros LF. Chem. Eur. J. 2002; 8: 868
  • 20 Bonifaci C, Ceccon A, Gambaro A, Manoli F, Mantovani L, Ganis P, Santi S, Venzo A. J. Organomet. Chem. 1998; 557: 97
  • 21 Bisello A, Ceccon A, Gambaro A, Ganis P, Manoli F, Santi S, Venzo A. J. Organomet. Chem. 2000; 593–594: 315
  • 22 Ceccon A, Bisello A, Crociani L, Gambaro A, Ganis P, Manoli F, Santi S, Venzo A. J. Organomet. Chem. 2000; 600: 94
  • 23 Ceccon A, Crociani L, Santi S, Venzo A, Biffis A, Boccaletti G. Tetrahedron Lett. 2002; 43: 8475
  • 24 Orian L, Ganis P, Santi S, Ceccon A. J. Organomet. Chem. 2005; 690: 482
  • 25 Santi S, Orian L, Durante C, Bencze EZ, Bisello A, Donoli A, Ceccon A, Benetollo F, Crociani L. Chem. Eur. J. 2007; 13: 7933
  • 26 Orian L, Bisello A, Santi S, Ceccon A, Saielli G. Chem. Eur. J. 2004; 10: 4029
  • 27 Zarate X, Schott E, Bunel E, Manríquez JM, Chávez I. J. Chem. 2017; 2017: 1
  • 28 Cloke FG. N, Green JC, Kilpatrick AF. R, O’Hare D. Coord. Chem. Rev. 2017; 344: 238
  • 29 Lobanova IA, Zdanovich VI. Russ. Chem. Rev. 1988; 57: 967
  • 30 Calhorda MJ, Veiros LF. Coord. Chem. Rev. 1999; 185–186: 37
  • 31 Shibata Y, Tanaka K. Synthesis 2012; 44: 323
  • 32 Orian L, Swart M, Bickelhaupt FM. ChemPhysChem 2014; 15: 219
  • 33 Orian L, van Stralen JN. P, Bickelhaupt FM. Organometallics 2007; 26: 3816
  • 34 Hardesty JH, Koerner JB, Albright TA, Lee G.-Y. J. Am. Chem. Soc. 1999; 121: 6055
  • 35 Vollhardt KP. C. Angew. Chem., Int. Ed. Engl. 1984; 23: 539
  • 36 Agenet N, Gandon V, Vollhardt KP. C, Malacria M, Aubert C. J. Am. Chem. Soc. 2007; 129: 8860
  • 37 Earl RA, Vollhardt KP. C. J. Org. Chem. 1984; 49: 4786
  • 38 Wakatsuki Y, Yamazaki H. J. Chem. Soc., Chem. Commun. 1973; 280a
  • 39 Wakatsuki Y, Sakurai T, Yamazaki H. J. Chem. Soc., Dalton Trans. 1982; 1923
  • 40 Wakatsuki Y, Nomura O, Kitaura K, Morokuma K, Yamazaki H. J. Am. Chem. Soc. 1983; 105: 1907
  • 41 Wakatsuki Y, Yamazaki H. Bull. Chem. Soc. Jpn. 1985; 58: 2715
  • 42 Bönnemann H. Angew. Chem., Int. Ed. Engl. 1978; 17: 505
  • 43 Bönnemann H. Angew. Chem., Int. Ed. Engl. 1985; 24: 248
  • 44 Dalla Tiezza M, Bickelhaupt FM, Orian L. ChemPhysChem 2018; 19: 1766
  • 45 Dahy AA, Suresh CH, Koga N. Bull. Chem. Soc. Jpn. 2005; 78: 792
  • 46 Dahy AA, Yamada K, Koga N. Organometallics 2009; 28: 3636
  • 47 Dahy AA, Koga N. J. Organomet. Chem. 2014; 770: 101
  • 48 Werz DB, Klatt G, Raskatov JA, Köppel H, Gleiter R. Organometallics 2009; 28: 1675
  • 49 Mousavi M, Pakiari AH. J. Mol. Model. 2014; 20: 2418
  • 50 Dahy AA, Koga N. J. Organomet. Chem. 2010; 695: 2240
  • 51 Becke AD. Phys. Rev. A 1988; 38: 3098
  • 52 Lee C, Yang W, Parr RG. Phys. Rev. B 1988; 37: 785
  • 53 van Lenthe E, Baerends EJ, Snijders JG. J. Chem. Phys. 1994; 101: 9783
  • 54 Schore NE. Chem. Rev. 1988; 88: 1081
  • 55 Ingrosso G, Ronca P, Cioni P. IT 1164249, 1983
  • 56 Cioni P, Diversi P, Ingrosso G, Lucherini A, Ronca P. J. Mol. Catal. 1987; 40: 337
  • 57 Diversi P, Ingrosso G, Lucherini A, Minutillo A. J. Mol. Catal. 1987; 40: 359
  • 58 Diversi P, Ermini L, Ingrosso G, Lucherini A. J. Organomet. Chem. 1993; 447: 291
  • 59 Varela JA, Saá C. Chem. Rev. 2003; 103: 3787
  • 60 Dalla Tiezza M, Bickelhaupt FM, Orian L. ChemistryOpen 2019; 8: 143
  • 61 Becke AD. J. Chem. Phys. 1993; 98: 5648
  • 62 Miehlich B, Savin A, Stoll H, Preuss H. Chem. Phys. Lett. 1989; 157: 200
  • 63 Häussermann U, Dolg M, Stoll H, Preuss H, Schwerdtfeger P, Pitzer RM. Mol. Phys. 1993; 78: 1211
  • 64 Küchle W, Dolg M, Stoll H, Preuss H. J. Chem. Phys. 1994; 100: 7535
  • 65 Leininger T, Nicklass A, Stoll H, Dolg M, Schwerdtfeger P. J. Chem. Phys. 1996; 105: 1052
  • 66 Dazinger G, Torres-Rodrigues M, Kirchner K, Calhorda MJ, Costa PJ. J. Organomet. Chem. 2006; 691: 4434
  • 67 McLean AD, Chandler GS. J. Chem. Phys. 1980; 72: 5639
  • 68 Krishnan R, Binkley JS, Seeger R, Pople JA. J. Chem. Phys. 1980; 72: 650
  • 69 Wachters AJ. H. J. Chem. Phys. 1970; 52: 1033
  • 70 Hay PJ. J. Chem. Phys. 1977; 66: 4377
  • 71 Raghavachari K, Trucks GW. J. Chem. Phys. 1989; 91: 1062
  • 72 Curtiss LA, McGrath MP, Blaudeau J, Davis NE, Binning RC, Radom L. J. Chem. Phys. 1995; 103: 6104
  • 73 McGrath MP, Radom L. J. Chem. Phys. 1991; 94: 511
  • 74 Michelin RA, Mozzon M, Bertani R. Coord. Chem. Rev. 1996; 147: 299
  • 75 Groom CR, Bruno IJ, Lightfoot MP, Ward SC. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016; 72: 171
  • 76 Kirchner K, Calhorda MJ, Schmid R, Veiros LF. J. Am. Chem. Soc. 2003; 125: 11721
  • 77 Orian L, van Zeist WJ, Bickelhaupt FM. Organometallics 2008; 27: 4028
  • 78 Orian L, Wolters LP, Bickelhaupt FM. Chem. Eur. J. 2013; 19: 13337
  • 79 Schmid G, Kampmann D, Meyer W, Boese R, Paetzold P, Delpy K. Chem. Ber. 1985; 118: 2418
  • 80 Schmid G, Schmidt F. Chem. Ber. 1986; 119: 1766
  • 81 Schmid G, Boese R. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1983; 38: 485
  • 82 Schmid G, Schütz M. Organometallics 1992; 11: 1789
  • 83 Schmid G, Kilanowski B, Boese R, Bläser D. Chem. Ber. 1993; 126: 899
  • 84 Schmid G, Schütz M. J. Organomet. Chem. 1995; 492: 185
  • 85 Ashe AJ, Yang H, Fang X, Kampf JW. Organometallics 2002; 21: 4578
  • 86 Calhorda MJ, Costa PJ, Kirchner KA. Inorg. Chim. Acta 2011; 374: 24
  • 87 Abdulla K, Booth BL, Stacey C. J. Organomet. Chem. 1985; 293: 103
  • 88 Kozuch S, Shaik S. Acc. Chem. Res. 2011; 44: 101
  • 89 Kozuch S. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012; 2: 795
  • 90 Kozuch S. ACS Catal. 2015; 5: 5242
  • 91 Ahmad SM, Dalla Tiezza M, Orian L. Catalysts 2019; 9: 679