Synthesis 2019; 51(19): 3567-3587
DOI: 10.1055/s-0039-1690015
review
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Thioethers from Sulfonyl Chlorides, Sodium Sulfinates, and Sulfonyl Hydrazides

Ronghai Wu
a   Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, P. R. of China
,
Keke Huang
b   School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, P. R. of China   Email: liujbgood@hotmail.com
,
Guanyinsheng Qiu
c   College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. of China   Email: qiuguanyinsheng@mail.zjxu.edu.cn
,
Jin-Biao Liu
b   School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, P. R. of China   Email: liujbgood@hotmail.com
› Author Affiliations
Financial support from the National Natural Science Foundation of China (21502075, 21762018 and 21772067), the Natural Science Foundation of Jiangxi Province (No. 20171BAB213008), the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology is gratefully acknowledged.
Further Information

Publication History

Received: 08 April 2019

Accepted after revision: 21 June 2019

Publication Date:
29 July 2019 (online)


These authors contributed equally.

Abstract

Sulfur-containing moieties, especially thioethers (sulfides), play pivotal roles in the functionalities of many natural products, pharmaceutical compounds, and organic materials. In this review, we summarize the recent synthetic protocols of thioethers using thiolating reagents, including sulfonyl chlorides, sodium sulfinates, and sulfonyl hydrazides, as the ideal starting materials. Representative mechanisms for different types of reaction are also discussed.

1 Introduction

2 Synthesis of Thioethers from Sulfonyl Chlorides

3 Synthesis of Thioethers from Sodium Sulfinates

4 Synthesis of Thioethers from Sulfonyl Hydrazides

5 Conclusion

 
  • References

  • 1 Mansy SS, Cowan J. Acc. Chem. Res. 2004; 37: 719
  • 2 Li N.-S, Frederiksen JK, Piccirilli JA. Acc. Chem. Res. 2011; 44: 1257
    • 3a Cianchi F, Cortesini C, Magnelli L, Fanti E, Papucci L, Schiavone N, Messerini L, Vannacci A, Capaccioli S, Perna F. Mol. Cancer Ther. 2006; 5: 2716
    • 3b Natarajan A, Guo Y, Harbinski F, Fan Y.-H, Chen H, Luus L, Diercks J, Aktas H, Chorev M, Halperin JA. J. Med. Chem. 2004; 47: 4979
  • 4 Banerjee M, Poddar A, Mitra G, Surolia A, Owa T, Bhattacharyya B. J. Med. Chem. 2005; 48: 547
  • 5 Ragno R, Coluccia A, La Regina G, De Martino G, Piscitelli F, Lavecchia A, Novellino E, Bergamini A, Ciaprini C, Sinistro A. J. Med. Chem. 2006; 49: 3172
  • 6 Nuth M, Guan H, Zhukovskaya N, Saw YL, Ricciardi RP. J. Med. Chem. 2013; 56: 3135
  • 7 Cole DC, Lennox WJ, Lombardi S, Ellingboe JW, Bernotas RC, Tawa GJ, Mazandarani H, Smith DL, Zhang G, Coupet J. J. Med. Chem. 2005; 48: 353
    • 8a Bai F, Zhang S, Wei L, Liu Y. Asian J. Org. Chem. 2018; 7: 371
    • 8b Mori T, Nishimura T, Yamamoto T, Doi I, Miyazaki E, Osaka I, Takimiya K. J. Am. Chem. Soc. 2013; 135: 13900
    • 8c Liqing LI. Surf. Technol. 2018; 47: 122
    • 8d Gong X, Wang M, Ye S, Wu J. Org. Lett. 2019; 21: 1156
    • 8e Ye S, Qiu G, Wu J. Chem. Commun. 2019; 55: 1013
    • 8f Ye S, Zheng D, Wu J, Qiu G. Chem. Commun. 2019; 55: 2214
    • 8g Ye S, Li Y, Wu J, Li Z. Chem. Commun. 2019; 55: 2489
    • 8h Gong X, Li X, Xie W, Wu J, Ye S. Org. Chem. Front. 2019; 6: 1863
    • 8i Zhang J, Xie W, Ye S, Wu J. Org. Chem. Front. 2019; 6: 2254
    • 8j Ye S, Xiang T, Li X, Wu J. Org. Chem. Front. 2019; 6: 2183
    • 8k Ye S, Li X, Xie W, Wu J. Asian J. Org. Chem. 2019; 8: 893
    • 8l Ye S, Li X, Xie W, Wu J. Eur. J. Org. Chem. 2019; in press; DOI: 10.1002/ejoc.201900396
    • 8m Zhang J, Li X, Xie W, Ye S, Wu J. Org. Lett. 2019; 21: 4950
    • 9a Ghaderi A. Tetrahedron 2016; 72: 4758
    • 9b Pan X.-Q, Zou J.-P, Yi W.-B, Zhang W. Tetrahedron 2015; 71: 7481
    • 9c Sun F, Liu X, Chen X, Qian C, Ge X. Chin. J. Org. Chem. 2017; 37: 2211
  • 10 Wang D, Guo S, Zhang R, Lin S, Yan Z. RSC Adv. 2016; 6: 54377
    • 11a Sato A, Yorimitsu H, Oshima K. Angew. Chem. Int. Ed. 2005; 44: 1694
    • 11b Taniguchi N. Tetrahedron 2012; 68: 10510
    • 12a Firouzabadi H, Iranpoor N, Samadi A. Tetrahedron Lett. 2014; 55: 1212
    • 12b Zhao P, Yin H, Gao H, Xi C. J. Org. Chem. 2013; 78: 5001
  • 13 Cai M, Xiao R, Yan T, Zhao H. J. Organomet. Chem. 2014; 749: 55
  • 14 Luo F, Pan C, Li L, Chen F, Cheng J. Chem. Commun. 2011; 47: 5304
  • 16 Golzar N, Nowrouzi N, Abbasi M, Mehranpour A. New J. Chem. 2017; 41: 11921
  • 17 Reeves JT, Camara K, Han ZS, Xu Y, Lee H, Busacca CA, Senanayake CH. Org. Lett. 2014; 16: 1196
  • 18 Prasad D, Sekar G. Org. Lett. 2011; 13: 1008
  • 19 Hostier T, Ferey V, Ricci G, Gomez Pardo D, Cossy J. Org. Lett. 2015; 17: 3898
  • 20 Wang Y, Zhang X, Liu H, Chen H, Huang D. Org. Chem. Front. 2017; 4: 31
  • 21 Dong D.-Q, Hao S.-H, Yang D.-S, Li L.-X, Wang Z.-L. Eur. J. Org. Chem. 2017; 2017: 6576

    • For selected examples on disulfides, see:
    • 22a Lopes EF, Dalberto BT, Perin G, Alves D, Barcellos T, Lenardão EJ. Chem. Eur. J. 2017; 23: 13760
    • 22b Thupyai A, Pimpasri C, Yotphan S. Org. Biomol. Chem. 2018; 16: 424
    • 22c Wang L, Xie YB, Huang NY, Zhang NN, Li DJ, Hu YL, Liu MG, Li DS. Adv. Synth. Catal. 2017; 359: 779
    • 22d Wu X, Wang Y. Tetrahedron Lett. 2018; 59: 1240
    • 22e Zou L.-H, Zhao C, Li P.-G, Wang Y, Li J. J. Org. Chem. 2017; 82: 12892
    • 22f Devi N, Rahaman R, Sarma K, Barman P. Eur. J. Org. Chem. 2016; 2016: 384
    • 22g Guo T. Synth. Commun. 2017; 47: 2053
    • 22h Wei L, Xu L, Tang R.-Y. RSC Adv. 2015; 5: 107927
    • 22i Wang X, Qiu R, Yan C, Reddy VP, Zhu L, Xu X, Yin S.-F. Org. Lett. 2015; 17: 1970
    • 22j Müller T, Ackermann L. Chem. Eur. J. 2016; 22: 14151
    • 22k Tu H.-Y, Hu B.-L, Deng C.-L, Zhang X.-G. Chem. Commun. 2015; 51: 15558
    • 22l Vaquer AF, Frongia A, Secci F, Tuveri E. RSC Adv. 2015; 5: 96695
    • 22m Rahaman R, Devi N, Barman P. Tetrahedron Lett. 2015; 56: 4224
    • 22n Bao Y, Yang X, Dai Z, Ji S, Zhou Q, Yang F. Adv. Synth. Catal. 2019; 361: 2154
    • 22o Thurow S, Penteado F, Perin G, Alves D, Santi C, Monti B, Schiesser CH, Barcellos T, Lenardão EJ. Org. Chem. Front. 2018; 5: 1983
    • 22p Hu B, Zhou P, Rao K, Yang J, Li L, Yan S, Yu F. Tetrahedron Lett. 2018; 59: 1438
    • 22q Gao W.-C, Cheng Y.-F, Chang H.-H, Li X, Wei W.-L, Yang P. J. Org. Chem. 2019; 84: 4312
    • 22r Wang Y.-Z, Zhang H.-R, Zhou L, Fang J.-D, Liu X.-Y. Tetrahedron 2019; 75: 2893
    • 22s Xiong Y.-S, Yu Y, Weng J, Lu G. Org. Chem. Front. 2018; 5: 982
    • 22t Devi N, Rahaman R, Sarma K, Khan T, Barman P. Eur. J. Org. Chem. 2017; 2017: 1520
    • 22u An R, Liao L, Liu X, Song S, Zhao X. Org. Chem. Front. 2018; 5: 3557
    • 22v Wu S.-S, Feng C.-T, Hu D, Huang Y.-K, Li Z, Luo Z.-G, Ma S.-T. Org. Biomol. Chem. 2017; 15: 1680
    • 22w Zhen Q, Huang D, Shao Y, Cheng T, Chen J. Org. Biomol. Chem. 2018; 16: 9204
    • 22x Rathore V, Kumar S. Green Chem. 2019; 21: 2670
    • 22y Xu W, Hei Y.-Y, Song J.-L, Zhan X.-C, Zhang X.-G, Deng C.-L. Synthesis 2019; 51: 545
    • 22z Rodrigues J, Saba S, Joussef AC, Rafique J, Braga AL. Asian J. Org. Chem. 2018; 7: 1819
    • 22aa Yu Y, Zhou Y, Song Z, Liang G. Org. Biomol. Chem. 2018; 16: 4958
  • 23 Zhao X, Lu X, Wei A, Jia X, Chen J, Lu K. Tetrahedron Lett. 2016; 57: 5330
  • 24 Guo S, He W, Xiang J, Yuan Y. Tetrahedron Lett. 2015; 56: 2159
  • 25 Guo S, He W, Xiang J, Yuan Y. Tetrahedron Lett. 2014; 55: 6407
  • 26 Yu X, Wu Q, Wan H, Xu Z, Xu X, Wang D. RSC Adv. 2016; 6: 62298
  • 27 Kumaraswamy G, Raju R, Narayanarao V. RSC Adv. 2015; 5: 22718
  • 28 Fu Y, Su Y, Xu Q.-s, Du Z, Hu Y, Wang K.-H, Huang D. RSC Adv. 2017; 7: 6018
  • 29 Chen Y, Xiao F, Chen H, Liu S, Deng G.-J. RSC Adv. 2014; 4: 44621
  • 30 Liang S, Jiang L, Yi WB, Wei J. Org. Lett. 2018; 20: 7024
  • 31 Ravi C, Chandra Mohan D, Adimurthy S. Org. Biomol. Chem. 2016; 14: 2282
  • 32 Aziz J, Messaoudi S, Alami M, Hamze A. Org. Biomol. Chem. 2014; 12: 9743
  • 33 Zhao X, Wei A, Lu X, Lu K. Molecules 2017; 22: 1208
  • 34 Equbal D, Singh R, Saima, Lavekar AG, Sinha AK. J. Org. Chem. 2019; 84: 2660
  • 35 Wan D, Yang Y, Liu X, Li M, Zhao S, You J. Eur. J. Org. Chem. 2016; 2016: 55
  • 36 Wang D, Zhang R, Lin S, Deng R, Yan Z. Chin. J. Org. Chem. 2016; 36: 2757
  • 37 Zhao W, Zhou A. ChemCatChem 2015; 7: 3464
  • 38 Wu Q, Zhao D, Qin X, Lan J, You J. Chem. Commun. 2011; 47: 9188
  • 39 Chen M, Huang ZT, Zheng QY. Chem. Commun. 2012; 48: 11686
  • 40 Wu Z, Li Y.-C, Ding W.-Z, Zhu T, Liu S.-Z, Ren X, Zou L.-H. Asian J. Org. Chem. 2016; 5: 625
  • 41 Ghosh A, Lecomte M, Kim-Lee SH, Radosevich AT. Angew. Chem. Int. Ed. 2019; 58: 2864
  • 42 Jiang L, Yi W, Liu Q. Adv. Synth. Catal. 2016; 358: 3700
    • 43a Lu K, Deng Z, Li M, Li T, Zhao X. Org. Biomol. Chem. 2017; 15: 1254
    • 43b Zhao X, Wei A, Li T, Su Z, Chen J, Lu K. Org. Chem. Front. 2017; 4: 232
  • 44 Wang D, Zhang R, Lin S, Yan Z, Guo S. RSC Adv. 2015; 5: 108030
  • 45 Katrun P, Hongthong S, Hlekhlai S, Pohmakotr M, Reutrakul V, Soorukram D, Jaipetch T, Kuhakarn C. RSC Adv. 2014; 4: 18933
  • 46 Rao H, Wang P, Wang J, Li Z, Sun X, Cao S. RSC Adv. 2014; 4: 49165
  • 47 Lin Y.-M, Lu G.-P, Cai C, Yi W.-B. Org. Lett. 2015; 17: 3310
  • 48 Huang Z, Matsubara O, Jia S, Tokunaga E, Shibata N. Org. Lett. 2017; 19: 934
  • 49 Gao Y, Gao Y, Tang X, Peng J, Hu M, Wu W, Jiang H. Org. Lett. 2016; 18: 1158
  • 50 Lin YM, Lu GP, Wang GX, Yi WB. J. Org. Chem. 2017; 82: 382
  • 51 Xiao F, Chen S, Tian J, Huang H, Liu Y, Deng G.-J. Green Chem. 2016; 18: 1538
  • 52 Rahaman R, Barman P. Eur. J. Org. Chem. 2017; 2017: 6327
  • 53 Lin Y, Yi W. Chin. J. Org. Chem. 2018; 38: 1207
  • 54 Liu C, Fan J, Wu M, Chen J, Zhao Y, Xie M. Chin. J. Chem. 2018; 36: 819
  • 55 Xiao F, Xie H, Liu S, Deng G.-J. Adv. Synth. Catal. 2014; 356: 364
  • 56 Lin Y.-M, Lu G.-P, Wang G.-X, Yi W.-B. Adv. Synth. Catal. 2016; 358: 4100
    • 57a Zhao X, Zheng X, Tian M, Sheng J, Tong Y, Lu K. Tetrahedron 2017; 73: 7233
    • 57b Bu M.-J, Lu G.-P, Cai C. Org. Chem. Front. 2017; 4: 266
    • 57c Zhao X, Wei A, Yang B, Li T, Li Q, Qiu D, Lu K. J. Org. Chem. 2017; 82: 9175
    • 57d Sun D.-W, Jiang X, Jiang M, Lin Y, Liu J.-T. Eur. J. Org. Chem. 2017; 2017: 3505
    • 57e Yadav AK, Singh KN. Chem. Commun. 2018; 54: 1976
    • 57f Jiang L, Qian J, Yi W, Lu G, Cai C, Zhang W. Angew. Chem. Int. Ed. 2015; 54: 14965
    • 57g Yan Q, Jiang L, Yi W, Liu Q, Zhang W. Adv. Synth. Catal. 2017; 359: 2471
    • 57h He X.-L, Majumder S, Wu J, Guo S.-R, Yang M. Org. Chem. Front. 2019; in press; DOI: 10.1039/c9qo00350a
    • 57i Guo Y.-J, Lu S, Tian L.-L, Huang E.-L, Hao X.-Q, Zhu X, Shao T, Song M.-P. J. Org. Chem. 2018; 83: 338
  • 58 Sun D.-W, Jiang X, Jiang M, Lin Y, Liu J.-T. Eur. J. Org. Chem. 2018; 2018: 2078
  • 59 Liu J, Zhao X, Jiang L, Yi W. Adv. Synth. Catal. 2018; 360: 4012
  • 60 Chen L, Liu P, Wu J, Dai B. Tetrahedron 2018; 74: 1513
  • 61 Ramesha AB, Pavan Kumar CS, Sandhya NC, Kumara MN, Mantelingu K, Rangappa KS. RSC Adv. 2016; 6: 48375
  • 62 Rahaman R, Devi N, Sarma K, Barman P. RSC Adv. 2016; 6: 10873
  • 63 Meesin J, Pohmakotr M, Reutrakul V, Soorukram D, Leowanawat P, Kuhakarn C. Org. Biomol. Chem. 2017; 15: 3662
  • 64 Bagdi AK, Mitra S, Ghosh M, Hajra A. Org. Biomol. Chem. 2015; 13: 3314
  • 65 Yang Y, Zhang S, Tang L, Hu Y, Zha Z, Wang Z. Green Chem. 2016; 18: 2609
  • 66 Nookaraju U, Begari E, Yetra RR, Kumar P. ChemistrySelect 2016; 1: 81
  • 67 Li X, Xu Y, Wu W, Jiang C, Qi C, Jiang H. Chemistry 2014; 20: 7911
  • 68 Guo S, He W, Xiang J, Yuan Y. Chem. Commun. 2014; 50: 8578
  • 69 Yang F.-L, Tian S.-K. Angew. Chem. Int. Ed. 2013; 52: 4929
    • 70a Sharma S, Pathare RS, Sukanya Maurya AK, Goswami B, Agnihotri VK, Sawant DM, Pardasani RT. Tetrahedron Lett. 2017; 58: 3823
    • 70b Zhu J, Sun S, Xia M, Gu N, Cheng J. Org. Chem. Front. 2017; 4: 2153
    • 70c Yang X, Yan R. Org. Biomol. Chem. 2017; 15: 3571
    • 70d Zhao X, Zhang L, Lu X, Li T, Lu K. J. Org. Chem. 2015; 80: 2918
    • 70e Hosseinian A, Arshadi S, Sarhandi S, Monfared A, Vessally E. J. Sulfur Chem. 2019; 40: 289
    • 71a Singh R, Raghuvanshi DS, Singh KN. Org. Lett. 2013; 15: 4202
    • 71b Xu Z.-B, Lu G.-P, Cai C. Org. Biomol. Chem. 2017; 15: 2804
  • 72 Bao Y, Yang X, Zhou Q, Yang F. Org. Lett. 2018; 20: 1966
    • 73a Zhao X, Li T, Zhang L, Lu K. Org. Biomol. Chem. 2016; 14: 1131
    • 73b Zhao X, Deng Z, Wei A, Li B, Lu K. Org. Biomol. Chem. 2016; 14: 7304
    • 73c Yang Z, Yan Y, Li A, Liao J, Zhang L, Yang T, Zhou C. New J. Chem. 2018; 42: 14738
    • 73d Ravi C, Semwal R, Kumar R, Reddy NN. K, Adimurthy S. ChemistrySelect 2018; 3: 6116
    • 73e Pang X, Xiang L, Yang X, Yan R. Adv. Synth. Catal. 2016; 358: 321
    • 73f Deng L, Liu Y. ACS Omega 2018; 3: 11890
    • 73g Yu Q, Yang Y, Wan J.-P, Liu Y. J. Org. Chem. 2018; 83: 11385
    • 73h Yang F, Bao Y, Dai Z, Tian M, Jia Q, Zhou Q. Asian J. Org. Chem. 2019; 8: 234
    • 73i Hu S, Du S, Yao Y, Yang Z, Ren H, Chen Z. Synlett 2019; 30: 625
    • 73j Liu W, Wang S, Cai Z, Li Z, Liu J, Wang A. Synlett 2018; 29: 116
  • 74 Saini V, Khungar B. New J. Chem. 2018; 42: 12796
  • 75 Sun J, Qiu J.-K, Jiang B, Hao W.-J, Guo C, Tu S.-J. J. Org. Chem. 2016; 81: 3321
  • 76 Sun J, Qiu JK, Zhu YL, Guo C, Hao WJ, Jiang B, Tu SJ. J. Org. Chem. 2015; 80: 8217
  • 77 Singh N, Singh R, Raghuvanshi DS, Singh KN. Org. Lett. 2013; 15: 5874
  • 78 Yang F.-L, Wang F.-X, Wang T.-T, Wang Y.-J, Tian S.-K. Chem. Commun. 2014; 50: 2111
  • 79 Chowdhury SR, Fadikar P, Ul Hoque I, Maity S. Asian J. Org. Chem. 2018; 7: 332
  • 80 Yang F.-L, Gui Y, Yu B.-K, Jin Y.-X, Tian S.-K. Adv. Synth. Catal. 2016; 358: 3368
    • 81a Liu J.-B, Nie L, Yan H, Jiang L.-H, Weng J, Lu G. Org. Biomol. Chem. 2013; 11: 8014
    • 81b Liu J.-B, Yan H, Chen H.-X, Luo Y, Weng J, Lu G. Chem. Commun. 2013; 49: 5268
    • 81c Liu J.-B, Yan H, Lu G. Tetrahedron Lett. 2013; 54: 891
    • 81d Liu J.-B, Zhou H.-P, Peng Y.-Y. Tetrahedron Lett. 2014; 55: 2872
    • 81e Zhou H.-P, Liu J.-B, Yuan J.-J, Peng Y.-Y. RSC Adv. 2014; 4: 25576
    • 81f Liu J.-B, Chen F.-J, Liu E, Li J.-H, Qiu G. New J. Chem. 2015; 39: 7773
    • 81g Liu J.-B, Chen F.-J, Liu N, Hu J. RSC Adv. 2015; 5: 45843
    • 81h Liu J, Yuan S, Song X, Qiu G. Chin. J. Org. Chem. 2016; 36: 1790
    • 81i Liu J.-B, Yang C, Ko C.-N, Vellaisamy K, Yang B, Lee M.-Y, Leung C.-H, Ma D.-L. Sens. Actuators, B 2017; 243: 971
    • 81j Wang R, Lai X, Qiu G, Liu J. Chin. J. Org. Chem. 2019; 39: 952
    • 81k Wang Y, Ye Q, Qiu G, Liu J.-B. Chin. J. Org. Chem. 2018; 38: 1650
    • 81l Yuan S, Wang Y, Qiu G, Liu J. Chin. J. Org. Chem. 2017; 37: 566
    • 82a Olah GA, Narang SC, Field LD, Salem GF. J. Org. Chem. 1980; 45: 4792
    • 82b Kabalka GW, Reddy MS, Yao M.-L. Tetrahedron Lett. 2009; 50: 7340
  • 83 Zhao W, Xie P, Bian Z, Zhou A, Ge H, Zhang M, Ding Y, Zheng L. J. Org. Chem. 2015; 80: 9167
    • 84a Dai C, Xu Z, Huang F, Yu Z, Gao Y.-F. J. Org. Chem. 2012; 77: 4414
    • 84b Sharma P, Rohilla S, Jain N. J. Org. Chem. 2015; 80: 4116
  • 85 Patil SM, Kulkarni S, Mascarenhas M, Sharma R, Roopan SM, Roychowdhury A. Tetrahedron 2013; 69: 8255
    • 86a Knochel P, Jones P. Organozinc Reagents: A Practical Approach . Oxford University Press; Oxford: 1999
    • 86b The Chemistry of Organozinc Compounds . Marek I, Rappoport Z. John Wiley; Chichester: 2006
    • 86c Dilman AD, Levin VV. Tetrahedron Lett. 2016; 57: 3986
    • 87a Babudri F, Farinola GM, Naso F, Ragni R. Chem. Commun. 2007; 1003
    • 87b Zhang ZG, Wang J. J. Mater. Chem. 2012; 22: 4178
    • 87c Neto BA, Carvalho PH, Correa JR. Acc. Chem. Res. 2015; 48: 1560
    • 88a Bellale EV, Chaudhari MK, Akamanchi KG. Synthesis 2009; 3111
    • 88b Jiang L, Ding T, Yi W.-b, Zeng X, Zhang W. Org. Lett. 2018; 20: 2236
    • 89a Gromada J, Matyjaszewski K. Macromolecules 2001; 34: 7664
    • 89b Gao X, Pan X, Gao J, Huang H, Yuan G, Li Y. Chem. Commun. 2015; 51: 210
  • 90 Wang D, Zhang R, Lin S, Yan Z, Guo S. Synlett 2016; 27: 2003
    • 91a Narayanam JM, Tucker JW, Stephenson CR. J. Am. Chem. Soc. 2009; 131: 8756
    • 91b Dai C, Narayanam JM, Stephenson CR. Nat. Chem. 2011; 3: 140
  • 92 Bahrami K, Khodaei MM, Soheilizad M. J. Org. Chem. 2009; 74: 9287
  • 93 Ding Y, Wu W, Zhao W, Li Y, Xie P, Huang Y, Liu Y, Zhou A. Org. Biomol. Chem. 2016; 14: 1428
    • 94a André J, Dring L, Gillet G, Mas-Chamberlin C. Br. J. Pharmacol. 1979; 66: 506P
    • 94b Silverstone T, Fincham J, Plumley J. Br. J. Pharmacol. 1979; 7: 353
    • 94c Watling K. J. Pharm. Pharmacol. 1980; 32: 778
    • 94d Moffat AS. Science 1993; 261: 550
    • 94e Hu J. J. Fluorine Chem. 2009; 130: 1130
    • 94f Boiko VN. Beilstein J. Org. Chem. 2010; 6: 880
    • 94g Islam R, Lynch JW. Br. J. Pharmacol. 2012; 165: 2707
    • 94h Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 94i Coleman N, Nguyen HM, Cao Z, Brown BM, Jenkins DP, Zolkowska D, Chen Y.-J, Tanaka BS, Goldin AL, Rogawski MA. Neurotherapeutics 2015; 12: 234
    • 95a Kang X, Yan R, Yu G, Pang X, Liu X, Li X, Xiang L, Huang G. J. Org. Chem. 2014; 79: 10605
    • 95b Wang F.-X, Tian S.-K. J. Org. Chem. 2015; 80: 12697
  • 96 Wang TT, Yang FL, Tian SK. Adv. Synth. Catal. 2015; 357: 928
  • 97 Zhao X, Zhang L, Li T, Liu G, Wang H, Lu K. Chem. Commun. 2014; 50: 13121