Synthesis 2017; 49(13): 2787-2802
DOI: 10.1055/s-0036-1589497
review
© Georg Thieme Verlag Stuttgart · New York

Cross-Metathesis/Intramolecular (Hetero-)Michael Addition: A Convenient Sequence for the Generation of Carbo- and Heterocycles

María Sánchez-Roselló*
Departamento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Spain   Email: maria.sanchez-rosello@uv.es   Email: carlos.pozo@uv.es
,
Javier Miró
Departamento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Spain   Email: maria.sanchez-rosello@uv.es   Email: carlos.pozo@uv.es
,
Carlos del Pozo*
Departamento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Spain   Email: maria.sanchez-rosello@uv.es   Email: carlos.pozo@uv.es
› Author Affiliations
Supported by: Spanish Ministerio de Ciencia e Innovación (CTQ2013-43310-P)
Supported by: Generalitat Valenciana (GV/PrometeoII/2014/073)
Further Information

Publication History

Received: 27 January 2017

Accepted after revision: 01 March 2017

Publication Date:
04 May 2017 (online)


Abstract

The high stability and functional group compatibility of ruthenium carbene complexes confer them a great ability to catalyze domino processes. For this reason, the combination of metathesis reactions with additional transformations in a domino fashion has been exploited extensively, with the result of expanding the utility of ruthenium carbene complexes beyond that of just olefin metathesis. Among those domino processes, it is worth mentioning the sequence of cross-metathesis/intramolecular Michael addition, which allows for the generation of a wide variety of carbo- and heterocycles in a very simple manner, taking advantage of the benefits of domino reactions. Carbon-, oxygen- and nitrogen-centered nucleophiles are good partners in this protocol, the versatility of which has been illustrated with the synthesis of several biologically important compounds.

1 Introduction

2 Cross Metathesis/Intramolecular Aza-Michael Addition Sequences

3 Cross Metathesis/Intramolecular Oxa-Michael Addition Sequences

4 Cross Metathesis/Intramolecular Michael Addition Sequences

5 Conclusions and Outlook

 
  • References

  • 1 Hoveyda AH. Zhugralin AR. Nature 2007; 450: 243

    • For recent reviews that exemplify the relevance of metathesis reactions, see:
    • 2a Higman CS. Lummiss JA. M. Fogg DE. Angew. Chem. Int. Ed. 2016; 55: 3552
    • 2b Jacques R. Pal R. Parker NA. Sear CE. Smith PW. Ribaucourt D. Hodgson DM. Org. Biomol. Chem. 2016; 14: 5875
    • 2c Fustero S. Simón-Fuentes A. Barrio P. Haufe G. Chem. Rev. 2015; 115: 871
    • 2d Hoveyda AH. J. Org. Chem. 2014; 79: 4763
    • 2e Kress S. Blechert S. Chem. Soc. Rev. 2012; 41: 4389
    • 2f Dragutan I. Dragutan V. Demonceau A. RSC Adv. 2012; 2: 719
    • 2g Cusak A. Chem. Eur. J. 2012; 18: 5800
    • 2h Kotha S. Dipak MK. Tetrahedron 2012; 68: 397
    • 2i Prunet J. Eur. J. Org. Chem. 2011; 3634
    • 2j Nolan SP. Clavier H. Chem. Soc. Rev. 2010; 39: 3305
  • 3 Connon SJ. Blechert S. Angew. Chem. Int. Ed. 2003; 42: 1900

    • For reviews on CM reactions including synthetic applications, see:
    • 4a Herbert MB. Grubbs RH. Angew. Chem. Int. Ed. 2015; 54: 5018
    • 4b Lafaye K. Bosset C. Nicolas L. Guérinot A. Cossy J. Beilstein J. Org. Chem. 2015; 11: 2223
    • 4c Donohoe TH. Bower JF. Chan LK. M. Org. Biomol. Chem. 2012; 10: 1322
    • 4d Miao X. Dixneuf PH. Fischmeister C. Bruneau C. Green Chem. 2011; 13: 2258
    • 4e Fischmeister C. Bruneau C. Beilstein J. Org. Chem. 2011; 7: 156
    • 4f Aljarilla A. López JC. Plumet J. Eur. J. Org. Chem. 2010; 6213

      For reviews on domino reactions, see:
    • 5a Pellissier H. Chem. Rev. 2013; 113: 442
    • 5b Domino Reactions: Concepts for Efficient Organic Synthesis. Tietze LF. John Wiley & Sons; New York: 2013
    • 5c Pellissier H. Adv. Synth. Catal. 2012; 354: 237
    • 5d Ruiz M. López-Alvarado P. Giorgi G. Menéndez JC. Chem. Soc. Rev. 2011; 40: 3445
    • 5e Zhou J. Chem. Asian J. 2010; 5: 422
    • 5f Grondal C. Jeanty M. Enders D. Nat. Chem. 2010; 2: 167
    • 5g Poulin J. Grisé-Bard CM. Barriault L. Chem. Soc. Rev. 2009; 38: 3092
    • 5h Nicolaou KC. Chen JS. Chem. Soc. Rev. 2009; 38: 2993
    • 5i Barluenga J. Rodríguez F. Fañanás FJ. Chem. Asian J. 2009; 4: 1036
    • 5j Alba AN. Companyo X. Viciano M. Rios R. Curr. Org. Chem. 2009; 13: 1432
    • 5k Vilotijevic I. Jamison TF. Angew. Chem. Int. Ed. 2009; 48: 5250
    • 5l Shindoh N. Takemoto Y. Takasu K. Chem. Eur. J. 2009; 15: 12168
    • 5m Pellissier H. Tetrahedron 2006; 62: 1619

      For reviews on tandem reactions involving a metathesis process, see:
    • 6a Zielinski GK. Grela K. Chem. Eur. J. 2016; 22: 9449
    • 6b Han J.-C. Li C.-C. Synlett 2015; 26: 1289
    • 6c Li J. Lee D. Eur. J. Org. Chem. 2011; 4269
    • 6d Dragutan V. Dragutan I. J. Organomet. Chem. 2006; 691: 5129
  • 7 Chatterjee AK. Choi T.-L. Sanders DP. Grubbs RH. J. Am. Chem. Soc. 2003; 125: 11360

    • For recent reviews on the aza-Michael reaction, see:
    • 8a Sánchez-Roselló M. Aceña JL. Simón-Fuentes A. del Pozo C. Chem. Soc. Rev. 2014; 43: 7430
    • 8b Reyes E. Fernández M. Uría U. Vicario JL. Badía D. Carrillo L. Curr. Org. Chem. 2012; 16: 521
    • 8c Wang J. Li P. Choi PY. Chan AS. C. Kwong FY. ChemCatChem 2012; 4: 917
    • 8d Enders D. Wang C. Liebich JX. Chem. Eur. J. 2009; 15: 11058
  • 9 Amara Z. Caron J. Joseph D. Nat. Prod. Rep. 2013; 30: 1211
  • 11 Fustero S. Jiménez D. Sánchez-Roselló M. del Pozo C. J. Am. Chem. Soc. 2007; 129: 6700
  • 12 Legeay J.-C. Lewis W. Stockman RA. Chem. Commun. 2009; 2207
  • 13 Cai Q. Zheng C. You S.-L. Angew. Chem. Int. Ed. 2010; 49: 8666
  • 14 Fustero S. Monteagudo S. Sánchez-Roselló M. Flores S. Barrio P. del Pozo C. Chem. Eur. J. 2010; 16: 9835
  • 15 Kwon S.-H. Lee H.-J. Cho C.-W. Bull. Korean Chem. Soc. 2011; 32: 315
  • 16 Fustero S. Báez C. Sánchez-Roselló M. Asensio A. Miró J. del Pozo C. Synthesis 2012; 44: 1863
  • 17 Cochet T. Roche D. Bellosta V. Cossy J. Eur. J. Org. Chem. 2012; 801
  • 18 Liu H. Zeng C. Guo J. Zhang M. Yu S. RSC Adv. 2013; 3: 1666
  • 19 Fustero S. del Pozo C. Mulet C. Lázaro R. Sánchez-Roselló M. Chem. Eur. J. 2011; 17: 14267
  • 20 Boufroura H. Mauduit M. Drège E. Joseph D. J. Org. Chem. 2013; 78: 2346
  • 21 Clavier H. Urbina-Blanco CA. Nolan SP. Organometallics 2009; 28: 2848
  • 22 Drège E. Oko J. Venok P.-E. Cigant N. Joseph D. RSC Adv. 2015; 5: 96720
    • 23a Clavier H. Caijo F. Borré E. Rix D. Boeda F. Nolan SP. Mauduit M. Eur. J. Org. Chem. 2009; 4254
    • 23b Rix D. Caijo F. Laurent I. Boeda F. Clavier H. Nolan SP. Mauduit M. J. Org. Chem. 2008; 73: 4225
  • 24 Nising CF. Bräse S. Chem. Soc. Rev. 2012; 41: 988
    • 25a Hu J. Bian M. Ding H. Tetrahedron Lett. 2016; 57: 5519
    • 25b Wang N.-X. Yalan X. Wang Y.-J. Curr. Org. Chem. 2013; 17: 1555
    • 25c McLeod MC. Brimble MA. Rathwell DC. K. Wilson ZE. Yuen T.-Y. Pure Appl. Chem. 2012; 84: 1379
    • 25d Volz NB. Broehmer MC. Toraeng J. Nieger M. Bräse S. Ind. J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2009; 48: 1699
    • 25e Nising CF. Bräse S. Chem. Soc. Rev. 2008; 37: 1218

      For some recent examples, see:
    • 26a Meraz K. Gnanasekaran KK. Thing R. Bunce RA. Tetrahedron Lett. 2016; 57: 5057
    • 26b Parhi B. Maity S. Ghorai P. Org. Lett. 2016; 18: 5220
    • 26c Gurubrahamam R. Gao B.-F. Chen YM. Chan Y.-T. Tsai M.-K. Chen K. Org. Lett. 2016; 18: 3098
    • 26d Hu J. Xu D. Zhang Q. Shang Y. Shi M. Huangfu Y. Liu L. Rong L. Lai Y. He Y. RSC Adv. 2016; 6: 52583
    • 26e Yu J. Ma H. Yao H. Cheng H. Tong R. Org. Chem. Front. 2016; 3: 714
    • 26f Rathore K. Kuldeep S. Lad BS. Chennamsetti H. Katukojvala S. Chem. Commun. 2016; 52: 5812
    • 26g Maity S. Parhi B. Ghorai P. Angew. Chem. Int. Ed. 2016; 55: 7723
    • 26h Ren C. Wei F. Xuan Q. Wang D. Liu L. Adv. Synth. Catal. 2016; 358: 132
    • 26i Zheng W. Zhang J. Liu S. Yu C. Miao Z. RSC Adv. 2015; 5: 91108
    • 26j Liu Y. Zhu R.-Y. Li H.-Z. Jiang Y. Shi F. Synthesis 2015; 47: 1436
    • 26k Lin JB. Xu S.-M. Xie J.-K. Li H.-Y. Xu P.-F. Chem. Commun. 2015; 51: 3596
    • 26l He C. Zhu C. Wang B. Ding H. Chem. Eur. J. 2014; 20: 15053
    • 26m Schmidt B. Riemer M. Schilde U. Synlett 2014; 25: 2943
    • 26n Shelke AM. Rawat V. Sudalai A. Suryavanshi G. RSC Adv. 2014; 4: 49770
    • 26o Wan J.-P. Wang H. Liu Y. Ding H. Org. Lett. 2014; 16: 5160
    • 26p Wang Y. Bauer JO. Strohmann C. Kumar K. Angew. Chem. Int. Ed. 2014; 53: 7514
    • 26q Gharpure SJ. Prasad JV. K. Bera K. Eur. J. Org. Chem. 2014; 3570
    • 26r Youn SW. Song HS. Park JH. Org. Biomol. Chem. 2014; 12: 3288

      For selected examples, see:
    • 27a Bates RW. Li L. Palani K. Phetsang W. Loh JK. Asian J. Org. Chem. 2014; 3: 792
    • 27b Takahashi S. Akita Y. Kakamura T. Koshino H. Tetrahedron: Asymmetry 2012; 23: 952
    • 27c Thakur P. Boyapelly K. Gurram RR. Bandichhor R. Mukkanti K. Tetrahedron: Asymmetry 2012; 23: 659
    • 27d Robertson J. North C. Sadig JE. R. Tetrahedron 2011; 67: 5011
    • 27e Hume PA. Sperry J. Brimble MA. Org. Biomol. Chem. 2011; 9: 5423
    • 27f Aho JE. Piisola A. Krishnan KS. Pihko PM. Eur. J. Org. Chem. 2011; 1682
    • 27g Bates RW. Song P. Synthesis 2010; 2935
    • 27h Venkataiah M. Somaiah P. Reddipalli G. Fadnavis NW. Tetrahedron: Asymmetry 2009; 20: 2230
    • 27i Hiebel M.-A. Pelotier B. Lhoste P. Piva O. Synlett 2008; 1202
    • 27j Bates RW. Palani K. Tetrahedron Lett. 2008; 49: 2832
    • 27k Bressi C. Allais F. Cossy J. Synlett 2006; 3455
  • 28 Fuwa H. Noto K. Sasaki M. Org. Lett. 2010; 12: 1636
    • 29a Hong SH. Wenzel AG. Salguero TT. Day MW. Grubbs RH. J. Am. Chem. Soc. 2007; 129: 7961
    • 29b Louie J. Grubbs RH. Organometallics 2002; 21: 2153

      For selected references, see:
    • 30a Fustero S. Sánchez-Roselló M. Jiménez D. Sanz-Cervera JF. del Pozo C. Aceña JL. J. Org. Chem. 2006; 71: 2706
    • 30b Schmidt B. Eur. J. Org. Chem. 2004; 1865; and references therein
  • 31 Hong SH. Sanders DP. Lee CW. Grubbs RH. J. Am. Chem. Soc. 2005; 127: 17160
    • 32a Bäckvall J. Chowdhury RL. Karlsson U. J. Chem. Soc., Chem. Commun. 1991; 473
    • 32b Csjernyik G. Éll AH. Fadini L. Pugin B. Bäckvall J. J. Org. Chem. 2002; 67: 1657
  • 33 Fuwa H. Noguchi T. Noto K. Sasaki M. Org. Biomol. Chem. 2012; 10: 8108
    • 34a Lohr TL. Marks TJ. Nat. Chem. 2015; 7: 477
    • 34b Lohr TL. Marks TJ. Nat. Chem. 2015; 7: 608
    • 34c Yang Z.-P. Zhang W. You S.-L. J. Org. Chem. 2014; 79: 7785
    • 34d Patil NT. Shinde VS. Gajula B. Org. Biomol. Chem. 2012; 10: 211
    • 34e Wasilke J.-C. Obrey SJ. Baker RT. Bazán GC. Chem. Rev. 2005; 105: 1001
    • 34f Fogg DE. dos Santos EN. Coord. Chem. Rev. 2004; 248: 2365
    • 35a Fuwa H. Ichinokawa N. Noto K. Sasaki M. J. Org. Chem. 2012; 77: 2588
    • 35b Fuwa H. Noto K. Sasaki M. Org. Lett. 2011; 13: 1820
  • 36 Park H. Kim H. Hong J. Org. Lett. 2011; 13: 3742
  • 37 Kumaraswamy G. Rambabu D. Tetrahedron: Asymmetry 2013; 24: 196
  • 38 Fuwa H. Noto K. Sasaki M. Heterocycles 2010; 82: 641
  • 39 Waldeck AR. Krische MJ. Angew. Chem. Int. Ed. 2013; 52: 4470
  • 40 Zhang J.-W. Cai Q. Gui Q. Shi X.-X. You S.-L. Chem. Commun. 2013; 49: 7750
    • 41a Cannillo A. Norsikian S. Tran Huu Dau M.-E. Retailleau P. Iorga BI. Beau J.-M. Chem. Eur. J. 2014; 20: 12133
    • 41b Cannillo A. Norsikian S. Retailleau P. Tran Huu Dau M.-E. Iorga BI. Beau J.-M. Chem. Eur. J. 2013; 19: 9127

      For recent reviews on tandem protocols involving intramolecular Michael additions, see:
    • 42a Baldip K. Pavol J. Dixon DJ. Nat. Prod. Rep. 2014; 31: 550
    • 42b Bonne D. Coquerel Y. Constantieux T. Rodríguez J. Tetrahedron: Asymmetry 2010; 21: 1085
    • 42c Goudedranche S. Raimondi W. Bugaut X. Constantieux T. Bonne D. Rodríguez J. Synthesis 2013; 45: 1909
    • 42d Bonne D. Constantieux T. Coquerel Y. Rodríguez J. Chem. Eur. J. 2013; 19: 2218
  • 43 Li C.-F. Liu H. Liao J. Cao Y.-J. Liu X.-P. Xiao W.-J. Org. Lett. 2007; 9: 1847
  • 44 Chen J.-R. Li C.-F. An X.-L. Zhang J.-J. Zhu X.-Y. Xiao W.-J. Angew. Chem. Int. Ed. 2008; 47: 2489
  • 45 Cai Q. Zhao Z.-A. You S.-L. Angew. Chem. Int. Ed. 2009; 48: 7428
  • 46 An X.-L. Chen J.-R. Li C.-F. Zhang F.-G. Zou Y.-Q. Guo Y.-C. Xiao W.-J. Chem. Asian J. 2010; 5: 2258
  • 47 Zhang J.-W. Liu X.-W. Gu Q. Shi X.-X. You S.-L. Org. Chem. Front. 2015; 2: 476
  • 48 Zhou Y. Liu X.-W. Gu Q. You S.-L. Synlett 2016; 27: 586
  • 49 Boddaert T. Coquerel Y. Rodríguez J. Adv. Synth. Catal. 2009; 351: 1744
  • 50 Gimbert C. Lumbierres M. Marchi C. Moreno-Mañas M. Sebastián RM. Vallribera A. Tetrahedron 2005; 61: 8598
  • 51 Boddaert T. Coquerel Y. Rodríguez J. Chem. Eur. J. 2011; 17: 2048
  • 52 Boddaert T. Coquerel Y. Rodríguez J. Eur. J. Org. Chem. 2011; 5061
  • 53 Zhang Y. Song X. Chen X. Song A. Zhang S. Wang W. Synthesis 2014; 46: 2601
    • 54a Wang J. Li H. Zu L. Jiang W. Xie H. Duan W. Wang W. J. Am. Chem. Soc. 2006; 128: 12652
    • 54b Okino T. Hoashi Y. Furukawa T. Xu X. Takemoto Y. J. Am. Chem. Soc. 2005; 127: 119
    • 54c Vakulya B. Varga S. Csámpai A. Soós T. Org. Lett. 2005; 7: 1967
  • 55 Belmessieri B. Cordes DB. Slavin AM. Z. Smith AD. Org. Lett. 2013; 15: 3472
    • 56a Leverett CA. Purohit VC. Johnson AG. Davis RL. Tantillo DJ. Romo D. J. Am. Chem. Soc. 2012; 134: 13348
    • 56b Morrill LC. Lebl T. Slawin AM. Z. Smith AD. Chem. Sci. 2012; 3: 2088
    • 56c Simal C. Lebl T. Slawin AM. Z. Smith AD. Angew. Chem. Int. Ed. 2012; 51: 3653
    • 56d Belmessieri D. Morrill LC. Simal C. Slawin AM. Z. Smith AD. J. Am. Chem. Soc. 2011; 133: 2714
    • 56e Leverett CA. Purohit VC. Romo D. Angew. Chem. Int. Ed. 2010; 49: 9479