Synthesis 2017; 49(06): 1349-1355
DOI: 10.1055/s-0036-1588092
paper
© Georg Thieme Verlag Stuttgart · New York

Efficient Ruthenium(II)-Catalyzed Direct Reductive Amination of Aldehydes under Mild Conditions Using Hydrosilane as the Reductant­

Bin Li*
School of Chemical & Environmental Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, P. R. of China   eMail: binli@wyu.edu.cn   eMail: leeyib268@126.com
,
Jianxiong Zheng
School of Chemical & Environmental Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, P. R. of China   eMail: binli@wyu.edu.cn   eMail: leeyib268@126.com
,
Weifeng Zeng
School of Chemical & Environmental Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, P. R. of China   eMail: binli@wyu.edu.cn   eMail: leeyib268@126.com
,
Yibiao Li*
School of Chemical & Environmental Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, P. R. of China   eMail: binli@wyu.edu.cn   eMail: leeyib268@126.com
,
Lu Chen
School of Chemical & Environmental Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, P. R. of China   eMail: binli@wyu.edu.cn   eMail: leeyib268@126.com
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 12. Oktober 2016

Accepted after revision: 14. Oktober 2016

Publikationsdatum:
13. Dezember 2016 (online)


Abstract

A direct reductive amination of aldehydes with anilines is performed with a ruthenium(II)-(arene) catalyst. The [RuCl2(p-cymene)]2/Ph2SiH2 catalytic system is very efficient for the synthesis of secondary amines and tertiary amines in good yields, and is highly chemoselective, tolerating a wide range of functional groups, such as NO2, CN, CO2Me, F, Cl, Br, OMe, Me, furyl and alkyl. We also report an interesting direductive amination of 2-ethylbutanal.

Supporting Information

 
  • References


    • For selected representative books, see:
    • 1a Larock RC. Comprehensive Organic Transformations, A Guide to Functional Group Preparations. Wiley-VCH; New York: 1989
    • 1b Ricci A. Modern Amination Methods . Wiley-VCH; New York: 2000
    • 1c Lawrence SA. Amines: Synthesis, Properties and Applications . Cambridge University Press; Cambridge: 2004
    • 1d Amino Group Chemistry. From Synthesis to the Life Sciences. Ricci A. Wiley-VCH; Weinheim: 2008

      For reviews, see:
    • 2a Spindler F, Blaser H.-U In Transition Metals for Organic Synthesis . 2nd ed., Vol. 2; Beller M, Bolm C. Wiley-VCH; Weinheim: 2004: 113
    • 2b Blaser H.-U, Spindler F In The Handbook of Homogeneous Hydrogenation . Vol. 3. de Vries JG, Elsevier CJ. Wiley-VCH; Weinheim: 2007: 1193
    • 2c Blaser H.-U, Malan C, Pugin B, Spinder F, Steiner H, Studer M. Adv. Synth. Catal. 2003; 345: 103
    • 2d Tang W, Zhang X. Chem. Rev. 2003; 103: 3029
    • 2e Nugent TC, El-Shazly M. Adv. Synth. Catal. 2010; 352: 753
    • 2f Rueping M, Sugiono E, Schoepke FR. Synlett 2010; 852
    • 3a Xie J.-H, Zhu S.-F, Zhou Q.-L. Chem. Rev. 2011; 111: 1713
    • 3b Fleury-Brégeot N, de la Fuente V, Castillon S, Claver C. ChemCatChem 2010; 2: 1346
    • 3c Transition Metals for Organic Synthesis . 2nd ed.; Beller M, Bolm C. Wiley-VCH; Weinheim: 2004
    • 3d Fabrello A, Bachelier A, Urrutigoïty M, Kalck P. Coord. Chem. Rev. 2010; 254: 273
    • 4a Gladiali S, Alberico E In Transition Metals for Organic Synthesis . Beller M, Bolm C. Wiley-VCH; Weinheim: 2004
    • 4b Clapham SE, Hadzovic A, Morris RH. Coord. Chem. Rev. 2004; 248: 2201
    • 4c Samec JS. M, Bäckvall J.-E. Chem. Eur. J. 2002; 8: 2955
    • 4d Casey CP, Johnson JB. J. Org. Chem. 2003; 68: 1998
    • 4e Zhu C, Saito K, Yamanaka M, Akiyama T. Acc. Chem. Res. 2015; 48: 388
    • 5a Xiong B, Zhang S, Jiang H, Zhang M. Org. Lett. 2016; 18: 724
    • 5b Xiong B, Li Y, Lv W, Tan Z, Jiang H, Zhang M. Org. Lett. 2015; 17: 4054
    • 5c Xie F, Zhang M, Jiang H, Chen M, Lv W, Zheng A, Jian X. Green. Chem. 2015; 17: 279
  • 6 Seyden-Penne J. Reductions by the Alumino- and Borohydrides in Organic Synthesis. 2nd ed. Wiley; New York: 1997

    • For selected representative books and reports, see:
    • 7a Ojima I In The Chemistry of Organic Silicon Compounds . Vol. 1. Patai S, Rappoport Z. Wiley; Chichester: 1989
    • 7b Pukhnarevich VB, Lukevics E, Kopylova LT, Voronkov MG In Perspectives of Hydrosilylation . Lukevics E. Institute of Organic Synthesis; Riga: 1992
    • 7c Brook MA In Silicon in Organic, Organometallic, and Polymer Chemistry. Wiley; New York: 2000
    • 7d Nishiyama H In Transition Metals for Organic Synthesis . Beller M, Bolm C. Wiley-VCH; Weinheim: 2004
    • 7e Marciniec B. Coord. Chem. Rev. 2005; 249: 2374
    • 7f Riant O In Modern Reduction Methods . Anderson PG, Munslow IJ. Wiley-VCH; Weinheim: 2008: 321
    • 7g Arena CG. Mini Rev. Org. Chem. 2009; 6: 159
    • 7h Nishiyama H In Comprehensive Chirality . Vol. 5. Carreira EM, Yamamoto H. Elsevier; Amsterdam: 2012: 318

      For representative examples, see:
    • 8a Kennedy-Smith JJ, Nolin KA, Gunterman HP, Toste FD. J. Am. Chem. Soc. 2003; 125: 4056
    • 8b Nolin KA, Ahn RW, Toste FD. J. Am. Chem. Soc. 2005; 127: 12462
    • 8c Abbina S, Bian S, Oian C, Du G. ACS Catal. 2013; 3: 678
    • 8d Zhou S, Junge K, Addis D, Das S, Beller M. Angew. Chem. Int. Ed. 2009; 48: 9507
    • 8e Misal Castro LC, Sortais J.-B, Darcel C. Chem. Commun. 2012; 48: 151
    • 8f Lipshutz BH, Shimizu H. Angew. Chem. Int. Ed. 2004; 43: 2228
    • 8g Volkov A, Tinnis F, Slagbrand T, Pershagen I, Adolfsson H. Chem. Commun. 2014; 50: 14508
    • 8h Sunada Y, Kawakami H, Imaoka T, Motoyama Y, Nagashima H. Angew. Chem. Int. Ed. 2009; 48: 9511
    • 8i Das S, Wendt B, Möller K, Junge K, Beller M. Angew. Chem. Int. Ed. 2012; 51: 1662
  • 9 Mizuta T, Sakaguchi S, Ishii Y. J. Org. Chem. 2005; 70: 2195
    • 10a Sousa SC. A, Fernandes AC. Adv. Synth. Catal. 2009; 352: 2218
    • 10b Bernardo JR, Sousa SC. A, Florindo PR, Wolff M, Machura B, Fernandes AC. Tetrahedron 2013; 69: 9145
    • 10c Das BG, Ghorai P. Org. Biomol. Chem. 2013; 11: 4379
  • 11 Zheng J, Roisnel T, Darcel C, Sortais J.-B. ChemCatChem 2013; 5: 2729
  • 12 Enthaler S. Catal. Lett. 2011; 141: 55
    • 13a Enthaler S. ChemCatChem 2010; 2: 1411
    • 13b Jaafar H, Li H, Misal Castro LC, Zheng J, Roisnel T, Dorcet V, Sortais J.-B, Darcel C. Eur. J. Inorg. Chem. 2012; 3546
  • 14 Li B, Sortais J.-B, Darcel C, Dixneuf PH. ChemSusChem 2012; 5: 396
    • 15a Li B, Bheeter CB, Darcel C, Dixneuf PH. ACS Catal. 2011; 1: 1221
    • 15b Li B, Bheeter CB, Darcel C, Dixneuf PH. Top. Catal. 2014; 57: 833
    • 16a Nishibayashi Y, Takei I, Uemura S, Hidai M. Organometallics 1998; 17: 3420
    • 16b Hashimoto H, Aratani I, Kabuto C, Kira M. Organometallics 2003; 22: 2199
  • 17 Li B, Sortais J.-B, Darcel C. Chem. Commun. 2013; 49: 3691
  • 18 Tuttle T, Wang D, Thiel W, Köhler J, Hofmann M, Weis J. Dalton Trans. 2009; 5894
  • 19 Cui X, Zhang Y, Shi F, Deng Y. Chem. Eur. J. 2011; 17: 2581
  • 20 Zhou W, Fan M, Yin J, Jiang Y, Ma D. J. Am. Chem. Soc. 2015; 137: 11942
  • 21 Zhao Y, Foo SW, Saito S. Angew. Chem. Int. Ed. 2011; 50: 3006
  • 22 Zhan L.-W, Han L, Xing P, Jiang B. Org. Lett. 2015; 17: 5990
  • 23 Motoyama Y, Taguchi M, Desmira N, Yoon S.-H, Mochida I, Nagashima H. Chem. Asian J. 2014; 9: 71
  • 24 Sorribes I, Junge K, Beller M. J. Am. Chem. Soc. 2014; 136: 14314
  • 25 Lepley AR, Becker RH, Guimanini AG. J. Org. Chem. 1971; 36: 1222
  • 26 Sueki S, Kuninobu Y. Org. Lett. 2013; 15: 1544
  • 27 Numata M, Tamesue S, Fujisawa T, Haraguchi S, Hasegawa T, Bae A.-H, Li C, Sakurai K, Shinkai S. Org. Lett. 2006; 8: 5533
  • 28 Kovalenko OO, Volkov A, Adolfsson H. Org. Lett. 2015; 17: 446
  • 29 Nayal OS, Bhatt V, Sharma S, Kumar N. J. Org. Chem. 2015; 80: 5912