Synlett 2008(19): 2997-3000  
DOI: 10.1055/s-0028-1087300
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Organocatalytic Asymmetric 1,3-Dipolar Cycloaddition of Nitrones to Nitroolefins

Wei Du, Yan-Kai Liu, Lei Yue, Ying-Chun Chen*
Key Laboratory of Drug-Targeting and Drug Deliver System of Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China
Fax: +86(28)85502609; e-Mail: ycchenhuaxi@yahoo.com.cn; e-Mail: ycchen@scu.edu.cn;
Further Information

Publication History

Received 1 August 2008
Publication Date:
23 October 2008 (online)

Abstract

The asymmetric 1,3-dipolar cycloaddition of nitrones to nitroolefins was investigated by employing novel thiourea-containing organocatalysts. This transformation exhibited excellent diastereoselectivities (generally >99:1 dr) and moderate to high enantioselectivities (up to 88% ee). A 2,3-diaminopropanol derivative with three contiguous chiral centers was efficiently prepared from one cycloaddition adduct.

    References and Notes

  • 1a For a comprehensive review of 1,3-dipolar cycloadditions, see: Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products   Padwa A. Pearson WH. John Wiley and Sons; Hoboken NJ: 2003. 
  • For recent reviews of asymmetric 1,3-dipolar cycloadditions, see:
  • 1b Pellissier H. Tetrahedron  2007,  63:  3235 
  • 1c Gothelf KV. Jørgensen KA. Chem. Rev.  1998,  98:  863 
  • For reviews, see:
  • 2a Coldham I. Hufton R. Chem. Rev.  2005,  105:  2765 
  • 2b Nájera C. Sansano JM. Angew. Chem. Int. Ed.  2005,  44:  6272 
  • 2c Pandey G. Banerjee P. Gadre SR. Chem. Rev.  2006,  106:  4484 
  • For selected examples, see:
  • 3a Shintani R. Fu GC. J. Am. Chem. Soc.  2003,  125:  10778 
  • 3b Suárez A. Downey CW. Fu GC. J. Am. Chem. Soc.  2005,  127:  11244 
  • 3c Suga H. Funyu A. Kakehi A. Org. Lett.  2007,  9:  97 
  • 3d Chen W. Yuan X.-H. Li R. Du W. Wu Y. Ding L.-S. Chen Y.-C. Adv. Synth. Catal.  2006,  348:  1818 
  • 3e Chen W. Du W. Duan Y.-Z. Wu Y. Yang S.-Y. Chen Y.-C. Angew. Chem. Int. Ed.  2007,  46:  7667 
  • 3f Sibi MP. Rane D. Stanley LM. Soeta T. Org. Lett.  2008,  10:  2971 
  • For selected examples, see:
  • 4a Luft JAR. Meleson K. Houk KN. Org. Lett.  2007,  9:  555 
  • 4b Shing TKM. Wong WF. Cheng HM. Kwok WS. So KH. Org. Lett.  2007,  9:  753 
  • 4c Sibi MP. Ma Z. Itoh K. Prabagaran N. Jasperse CP. Org. Lett.  2005,  7:  2349 
  • 4d Sibi MP. Itoh K. Jasperse CP. J. Am. Chem. Soc.  2004,  126:  5366 
  • For selected examples, see:
  • 5a Sibi MP. Stanley LM. Jasperse CP. J. Am. Chem. Soc.  2005,  127:  8276 
  • 5b Sibi MP. Stanley LM. Soeta T. Org. Lett.  2007,  9:  1553 
  • 5c Kanemasa S. Kanai T. J. Am. Chem. Soc.  2000,  122:  10710 
  • 5d Kano T. Hashimoto T. Maruoka K. J. Am. Chem. Soc.  2006,  128:  2174 
  • For reviews, see:
  • 6a Frederikson M. Tetrahedron  1997,  53:  403 
  • 6b Gothelf KV. Jørgensen KA. Chem. Commun.  2000,  1449 
  • 7a Jiao P. Nakashima D. Yamamoto H. Angew. Chem. Int. Ed.  2008,  47:  2411 
  • 7b Simonsen KB. Bayon P. Hazell RG. Gothelf KV. Jørgensen KA. J. Am. Chem. Soc.  1999,  121:  3845 
  • For selected examples, see:
  • 8a Viton F. Bernardinelli G. Kundig EP. J. Am. Chem. Soc.  2002,  124:  4968 
  • 8b Sibi MP. Ma Z. Jasperse CP. J. Am. Chem. Soc.  2004,  126:  718 
  • 8c Palomo C. Oiarbide M. Arceo E. García JM. López R. González A. Linden A. Angew. Chem. Int. Ed.  2005,  44:  6187 
  • 8d Kano T. Hashimoto T. Maruoka K. J. Am. Chem. Soc.  2005,  127:  11926 
  • 8e Huang Z.-Z. Kang Y.-B. Zhou J. Ye M.-C. Tang Y. Org. Lett.  2004,  6:  1677 
  • 8f Suga H. Nakajima T. Itoh K. Kakehi A. Org. Lett.  2005,  7:  1431 
  • 8g Evans DA. Song H.-J. Fandrick KR. Org. Lett.  2006,  8:  3351 
  • 8h Lim K.-C. Hong Y.-T. Kim S. Adv. Synth. Catal.  2008,  350:  380 
  • 8i Wang Y. Wolf J. Zavalij P. Doyle MP. Angew. Chem. Int. Ed.  2008,  47:  1439 
  • For limited examples by organocatalysis, see:
  • 8j Jen WS. Wiener JJM. MacMillan DWC. J. Am. Chem. Soc.  2000,  122:  9874 
  • 8k Karlsson S. Högberg H.-E. Eur. J. Org. Chem.  2003,  2782 
  • 9a Yakura T. Nakazawa M. Takino T. Ikeda M. Chem. Pharm. Bull.  1992,  40:  2014 
  • 9b Karthikeyan K. Perumal PT. Etti S. Shanmugam G. Tetrahedron  2007,  63:  10581 
  • For reviews, see:
  • 10a Berner OM. Tedeschi L. Enders D. Eur. J. Org. Chem.  2002,  1877 
  • 10b Tsogoeva SB. Eur. J. Org. Chem.  2002,  1701 
  • For reviews on thiourea catalysis, see:
  • 11a Takemoto Y. Org. Biomol. Chem.  2005,  3:  4299 
  • 11b Connon SJ. Chem. Eur. J.  2006,  12:  5418 
  • 11c Doyle AG. Jacobsen EN. Chem. Rev.  2007,  107:  5713 
  • 11d Yu X. Wang W. Chem. Asian J.  2008,  3:  516 
  • 11e Connon SJ. Chem. Commun.  2008,  2499 
  • 12a Okino T. Hoashi Y. Takemoto Y. J. Am. Chem. Soc.  2003,  125:  12672 
  • 12b Okino T. Hoashi Y. Furukawa T. Xu X. Takemoto Y. J. Am. Chem. Soc.  2005,  127:  119 
  • 12c McCooey SH. Connon SJ. Angew. Chem. Int. Ed.  2005,  44:  6367 
  • 12d Ye J. Dixon DJ. Hynes PS. Chem. Commun.  2005,  4481 
  • 12e Herrera RP. Sgarzani V. Bernardi L. Ricci A. Angew. Chem. Int. Ed.  2005,  44:  6576 
  • 12f Wang J. Li H. Duan W. Zu L. Wang W. Org. Lett.  2005,  7:  4713 
  • 12g Liu T.-Y. Cui H.-L. Chai Q. Long J. Li B.-J. Wu Y. Ding L.-S. Chen Y.-C. Chem. Commun.  2007,  2228 
  • 12h Hynes PS. Stranges D. Stupple PA. Guarna A. Dixon DJ. Org. Lett.  2007,  9:  2107 
  • 12i Hynes PS. Stupple PA. Dixon DJ. Org. Lett.  2008,  10:  1389 
  • 12j Wang J. Xie H. Li H. Zu L. Wang W. Angew. Chem. Int. Ed.  2008,  47:  4177 
  • 12k Lu L.-Q. Cao Y.-J. Liu X.-P. An J. Yao C.-J. Ming Z.-H. Xiao W.-J. J. Am. Chem. Soc.  2008,  130:  6946 
  • 13a Li B.-J. Jiang L. Liu M. Chen Y.-C. Ding L.-S. Wu Y. Synlett  2005,  603 
  • 13b Liu T.-Y. Long J. Li B.-J. Jiang L. Li R. Wu Y. Ding L.-S. Chen Y.-C. Org. Biomol. Chem.  2006,  4:  2097 
  • 13c Liu T.-Y. Li R. Chai Q. Long J. Li B.-J. Wu Y. Ding L.-S. Chen Y.-C. Chem. Eur. J.  2007,  13:  319 
  • 13d Liu T.-Y. Cui H.-L. Long J. Li B.-J. Wu Y. Ding L.-S. Chen Y.-C. J. Am. Chem. Soc.  2007,  129:  1878 
  • 13e Zhang Y. Liu Y.-K. Kang T.-R. Hu Z.-K. Chen Y.-C. J. Am. Chem. Soc.  2008,  130:  2456 
  • 13f Tian X. Jiang K. Peng J. Du W. Chen Y.-C. Org. Lett.  2008,  10:  3583 
  • 13g Han B. Liu Q.-P. Li R. Tian X. Xiong X.-F. Deng J.-G. Chen Y.-C. Chem. Eur. J.  2008,  14:  8094 
  • 15a Taylor MS. Jacobsen EN. J. Am. Chem. Soc.  2004,  126:  10558 
  • 15b Taylor MS. Tokunaga N. Jacobsen EN. Angew. Chem. Int. Ed.  2005,  44:  6700 
  • 15c Raheem IT. Thiara PS. Peterson EA. Jacobsen EN. J. Am. Chem. Soc.  2007,  129:  13404 
14

β-Nitrostyrene exhibited very sluggish reactivity in the catalytic 1,3-dipolar cycloaddition even at much higher temperature (>50 ˚C).

16

Thiourea-pyrrole catalysts 1f-k were prepared in a similar procedure as 1e, see ref. 14.

17

General Procedure for the Asymmetric 1,3-Dipolar Cycloaddition Reaction
Catalyst 1j (6.6 mg, 0.01 mmol, 10 mol%), nitrone 2a (20.0 mg, 0.1 mmol) and 4 Å MS (50 mg) were stirred in redistilled MTBE (0.4 mL) at 0 ˚C. Then nitroolefin 3a (14.0 mg, 0.12 mmol) in MTBE (0.1 mL) was added. After 6 d, product 4a was isolated by FC on SiO2 eluted with EtOAc-PE as an oil; 24.5 mg, 79% yield; R f  = 0.5 (PE-EtOAc, 15:1); [α]D ²0 -101.3 (c 1.00 in CH2Cl2); 82% ee, determined by HPLC analysis [Daicel chiralcel OD, n-hexane-i-PrOH (95:5), 1.0 mL/min, λ = 254 nm, t R(major) = 7.70 min, t R(minor) = 11.16 min]. ¹H NMR (400 MHz, CDCl3): δ = 7.44-7.41 (m, 2 H), 7.35-7.33 (m, 3 H), 7.21-7.17 (m,
2 H), 7.04-6.98 (m, 3 H), 5.29 (dd, J = 9.2, 7.2 Hz, 1 H), 4.80 (t, J = 7.2 Hz, 1 H), 4.74 (d, J = 9.2 Hz, 1 H), 2.08-2.03 (m, 1 H), 1.14 (d, J = 6.8 Hz, 3 H), 1.02 (d, J = 6.8 Hz, 3 H) ppm. ¹³C NMR (50 MHz, CDCl3): δ = 148.1, 133.3, 129.2, 128.8, 128.7, 128.2, 124.1, 116.4, 94.5, 84.7, 73.0, 30.7, 19.0, 17.9 ppm. ESI-HRMS: m/z calcd for C18H20N2O3 + Na: 335.1372; found: 335.1320.

18

General Procedure for the Synthesis of 2,3-Diamino-propanol 5 Compound 4a (31 mg, 0.1 mmol, 99% ee) and NiCl2˙6H2O (100 mg, 0.4 mmol) were stirred in MeOH (1 mL) and THF (0.5 mL) at r.t. for 10 min. Then NaBH4 (33 mg, 0.9 mmol) was added in portions at 0 ˚C. After stirring for 5 min, EtOAc (5 mL) and H2O (5 mL) were added. After filtration, the filtrate was extracted with EtOAc (2 × 10 mL). The combined organic layers were dried over Na2SO4 and concentrated. The residue and (Boc)2O (26 mg, 0.12 mmol) were dissolved in CH2Cl2 and stirred for 2 h. The solvent was then removed in vacuo, and the residue was purified by flash chromatography on SiO2 (EtOAc-PE) to give N-Boc-diaminopropanol 5 as an oil; 35 mg, 91% yield for two steps; R f  = 0.4 (PE-EtOAc, 5:1); [α]D ²0 +18.6 (c 0.70 in CH2Cl2); 99% ee, determined by HPLC analysis [Daicel chiralcel AD, n-hexane-i-PrOH (90:10), 1.0 mL/min, λ = 254 nm, t R(minor) = 5.48 min, t R(major) = 9.32 min]. ¹H NMR (400 MHz, CDCl3): δ = 7.33-7.28 (m, 4 H), 7.23-7.21 (m, 1 H), 7.11-7.07 (m, 2 H), 6.70-6.67 (m, 1 H), 6.59-6.57 (m, 2 H), 5.46 (s, 1 H), 5.12 (d, J = 8.4 Hz, 1 H), 4.84-4.77 (m, 1 H), 4.03 (s, 1 H), 3.54 (s, 1 H), 1.86-1.84 (m, 1 H), 1.30 (s, 9 H), 1.06 (d, J = 6.8 Hz, 3 H), 1.02 (d, J = 6.4 Hz, 3 H) ppm. ¹³C NMR (50 MHz, CDCl3): δ = 155.4, 147.0, 140.6, 129.1, 128.5, 127.1, 126.9, 118.3, 114.8, 79.6, 78.8, 58.6, 56.1, 29.9, 28.2, 19.4, 18.2 ppm. ESI-HRMS: m/z calcd for C23H32N2O3 + H: 385.2491; found: 385.2453.

19

CCDC-700901 (6) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.