Subscribe to RSS
DOI: 10.1055/s-0028-1087300
Organocatalytic Asymmetric 1,3-Dipolar Cycloaddition of Nitrones to Nitroolefins
Publication History
Publication Date:
23 October 2008 (online)

Abstract
The asymmetric 1,3-dipolar cycloaddition of nitrones to nitroolefins was investigated by employing novel thiourea-containing organocatalysts. This transformation exhibited excellent diastereoselectivities (generally >99:1 dr) and moderate to high enantioselectivities (up to 88% ee). A 2,3-diaminopropanol derivative with three contiguous chiral centers was efficiently prepared from one cycloaddition adduct.
Key words
dipolar cycloaddition - nitrones - nitroolefins - thiourea - orgaoncatalysis
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1a For
a comprehensive review of 1,3-dipolar cycloadditions, see:
Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles
and Natural Products
Padwa A.Pearson WH. John Wiley and Sons; Hoboken NJ: 2003.Reference Ris Wihthout Link - For recent reviews of asymmetric 1,3-dipolar cycloadditions, see:
- 1b
Pellissier H. Tetrahedron 2007, 63: 3235Reference Ris Wihthout Link - 1c
Gothelf KV.Jørgensen KA. Chem. Rev. 1998, 98: 863Reference Ris Wihthout Link - For reviews, see:
- 2a
Coldham I.Hufton R. Chem. Rev. 2005, 105: 2765Reference Ris Wihthout Link - 2b
Nájera C.Sansano JM. Angew. Chem. Int. Ed. 2005, 44: 6272Reference Ris Wihthout Link - 2c
Pandey G.Banerjee P.Gadre SR. Chem. Rev. 2006, 106: 4484Reference Ris Wihthout Link - For selected examples, see:
- 3a
Shintani R.Fu GC. J. Am. Chem. Soc. 2003, 125: 10778Reference Ris Wihthout Link - 3b
Suárez A.Downey CW.Fu GC. J. Am. Chem. Soc. 2005, 127: 11244Reference Ris Wihthout Link - 3c
Suga H.Funyu A.Kakehi A. Org. Lett. 2007, 9: 97Reference Ris Wihthout Link - 3d
Chen W.Yuan X.-H.Li R.Du W.Wu Y.Ding L.-S.Chen Y.-C. Adv. Synth. Catal. 2006, 348: 1818Reference Ris Wihthout Link - 3e
Chen W.Du W.Duan Y.-Z.Wu Y.Yang S.-Y.Chen Y.-C. Angew. Chem. Int. Ed. 2007, 46: 7667Reference Ris Wihthout Link - 3f
Sibi MP.Rane D.Stanley LM.Soeta T. Org. Lett. 2008, 10: 2971Reference Ris Wihthout Link - For selected examples, see:
- 4a
Luft JAR.Meleson K.Houk KN. Org. Lett. 2007, 9: 555Reference Ris Wihthout Link - 4b
Shing TKM.Wong WF.Cheng HM.Kwok WS.So KH. Org. Lett. 2007, 9: 753Reference Ris Wihthout Link - 4c
Sibi MP.Ma Z.Itoh K.Prabagaran N.Jasperse CP. Org. Lett. 2005, 7: 2349Reference Ris Wihthout Link - 4d
Sibi MP.Itoh K.Jasperse CP. J. Am. Chem. Soc. 2004, 126: 5366Reference Ris Wihthout Link - For selected examples, see:
- 5a
Sibi MP.Stanley LM.Jasperse CP. J. Am. Chem. Soc. 2005, 127: 8276Reference Ris Wihthout Link - 5b
Sibi MP.Stanley LM.Soeta T. Org. Lett. 2007, 9: 1553Reference Ris Wihthout Link - 5c
Kanemasa S.Kanai T. J. Am. Chem. Soc. 2000, 122: 10710Reference Ris Wihthout Link - 5d
Kano T.Hashimoto T.Maruoka K. J. Am. Chem. Soc. 2006, 128: 2174Reference Ris Wihthout Link - For reviews, see:
- 6a
Frederikson M. Tetrahedron 1997, 53: 403Reference Ris Wihthout Link - 6b
Gothelf KV.Jørgensen KA. Chem. Commun. 2000, 1449Reference Ris Wihthout Link - 7a
Jiao P.Nakashima D.Yamamoto H. Angew. Chem. Int. Ed. 2008, 47: 2411Reference Ris Wihthout Link - 7b
Simonsen KB.Bayon P.Hazell RG.Gothelf KV.Jørgensen KA. J. Am. Chem. Soc. 1999, 121: 3845Reference Ris Wihthout Link - For selected examples, see:
- 8a
Viton F.Bernardinelli G.Kundig EP. J. Am. Chem. Soc. 2002, 124: 4968Reference Ris Wihthout Link - 8b
Sibi MP.Ma Z.Jasperse CP. J. Am. Chem. Soc. 2004, 126: 718Reference Ris Wihthout Link - 8c
Palomo C.Oiarbide M.Arceo E.García JM.López R.González A.Linden A. Angew. Chem. Int. Ed. 2005, 44: 6187Reference Ris Wihthout Link - 8d
Kano T.Hashimoto T.Maruoka K. J. Am. Chem. Soc. 2005, 127: 11926Reference Ris Wihthout Link - 8e
Huang Z.-Z.Kang Y.-B.Zhou J.Ye M.-C.Tang Y. Org. Lett. 2004, 6: 1677Reference Ris Wihthout Link - 8f
Suga H.Nakajima T.Itoh K.Kakehi A. Org. Lett. 2005, 7: 1431Reference Ris Wihthout Link - 8g
Evans DA.Song H.-J.Fandrick KR. Org. Lett. 2006, 8: 3351Reference Ris Wihthout Link - 8h
Lim K.-C.Hong Y.-T.Kim S. Adv. Synth. Catal. 2008, 350: 380Reference Ris Wihthout Link - 8i
Wang Y.Wolf J.Zavalij P.Doyle MP. Angew. Chem. Int. Ed. 2008, 47: 1439Reference Ris Wihthout Link - For limited examples by organocatalysis, see:
- 8j
Jen WS.Wiener JJM.MacMillan DWC. J. Am. Chem. Soc. 2000, 122: 9874Reference Ris Wihthout Link - 8k
Karlsson S.Högberg H.-E. Eur. J. Org. Chem. 2003, 2782Reference Ris Wihthout Link - 9a
Yakura T.Nakazawa M.Takino T.Ikeda M. Chem. Pharm. Bull. 1992, 40: 2014Reference Ris Wihthout Link - 9b
Karthikeyan K.Perumal PT.Etti S.Shanmugam G. Tetrahedron 2007, 63: 10581Reference Ris Wihthout Link - For reviews, see:
- 10a
Berner OM.Tedeschi L.Enders D. Eur. J. Org. Chem. 2002, 1877Reference Ris Wihthout Link - 10b
Tsogoeva SB. Eur. J. Org. Chem. 2002, 1701Reference Ris Wihthout Link - For reviews on thiourea catalysis, see:
- 11a
Takemoto Y. Org. Biomol. Chem. 2005, 3: 4299Reference Ris Wihthout Link - 11b
Connon SJ. Chem. Eur. J. 2006, 12: 5418Reference Ris Wihthout Link - 11c
Doyle AG.Jacobsen EN. Chem. Rev. 2007, 107: 5713Reference Ris Wihthout Link - 11d
Yu X.Wang W. Chem. Asian J. 2008, 3: 516Reference Ris Wihthout Link - 11e
Connon SJ. Chem. Commun. 2008, 2499Reference Ris Wihthout Link - 12a
Okino T.Hoashi Y.Takemoto Y. J. Am. Chem. Soc. 2003, 125: 12672Reference Ris Wihthout Link - 12b
Okino T.Hoashi Y.Furukawa T.Xu X.Takemoto Y. J. Am. Chem. Soc. 2005, 127: 119Reference Ris Wihthout Link - 12c
McCooey SH.Connon SJ. Angew. Chem. Int. Ed. 2005, 44: 6367Reference Ris Wihthout Link - 12d
Ye J.Dixon DJ.Hynes PS. Chem. Commun. 2005, 4481Reference Ris Wihthout Link - 12e
Herrera RP.Sgarzani V.Bernardi L.Ricci A. Angew. Chem. Int. Ed. 2005, 44: 6576Reference Ris Wihthout Link - 12f
Wang J.Li H.Duan W.Zu L.Wang W. Org. Lett. 2005, 7: 4713Reference Ris Wihthout Link - 12g
Liu T.-Y.Cui H.-L.Chai Q.Long J.Li B.-J.Wu Y.Ding L.-S.Chen Y.-C. Chem. Commun. 2007, 2228Reference Ris Wihthout Link - 12h
Hynes PS.Stranges D.Stupple PA.Guarna A.Dixon DJ. Org. Lett. 2007, 9: 2107Reference Ris Wihthout Link - 12i
Hynes PS.Stupple PA.Dixon DJ. Org. Lett. 2008, 10: 1389Reference Ris Wihthout Link - 12j
Wang J.Xie H.Li H.Zu L.Wang W. Angew. Chem. Int. Ed. 2008, 47: 4177Reference Ris Wihthout Link - 12k
Lu L.-Q.Cao Y.-J.Liu X.-P.An J.Yao C.-J.Ming Z.-H.Xiao W.-J. J. Am. Chem. Soc. 2008, 130: 6946Reference Ris Wihthout Link - 13a
Li B.-J.Jiang L.Liu M.Chen Y.-C.Ding L.-S.Wu Y. Synlett 2005, 603Reference Ris Wihthout Link - 13b
Liu T.-Y.Long J.Li B.-J.Jiang L.Li R.Wu Y.Ding L.-S.Chen Y.-C. Org. Biomol. Chem. 2006, 4: 2097Reference Ris Wihthout Link - 13c
Liu T.-Y.Li R.Chai Q.Long J.Li B.-J.Wu Y.Ding L.-S.Chen Y.-C. Chem. Eur. J. 2007, 13: 319Reference Ris Wihthout Link - 13d
Liu T.-Y.Cui H.-L.Long J.Li B.-J.Wu Y.Ding L.-S.Chen Y.-C. J. Am. Chem. Soc. 2007, 129: 1878Reference Ris Wihthout Link - 13e
Zhang Y.Liu Y.-K.Kang T.-R.Hu Z.-K.Chen Y.-C. J. Am. Chem. Soc. 2008, 130: 2456Reference Ris Wihthout Link - 13f
Tian X.Jiang K.Peng J.Du W.Chen Y.-C. Org. Lett. 2008, 10: 3583Reference Ris Wihthout Link - 13g
Han B.Liu Q.-P.Li R.Tian X.Xiong X.-F.Deng J.-G.Chen Y.-C. Chem. Eur. J. 2008, 14: 8094Reference Ris Wihthout Link - 15a
Taylor MS.Jacobsen EN. J. Am. Chem. Soc. 2004, 126: 10558Reference Ris Wihthout Link - 15b
Taylor MS.Tokunaga N.Jacobsen EN. Angew. Chem. Int. Ed. 2005, 44: 6700Reference Ris Wihthout Link - 15c
Raheem IT.Thiara PS.Peterson EA.Jacobsen EN. J. Am. Chem. Soc. 2007, 129: 13404Reference Ris Wihthout Link
References and Notes
β-Nitrostyrene exhibited very sluggish reactivity in the catalytic 1,3-dipolar cycloaddition even at much higher temperature (>50 ˚C).
16Thiourea-pyrrole catalysts 1f-k were prepared in a similar procedure as 1e, see ref. 14.
17
General Procedure
for the Asymmetric 1,3-Dipolar Cycloaddition Reaction
Catalyst 1j (6.6 mg, 0.01 mmol, 10 mol%),
nitrone 2a (20.0 mg, 0.1 mmol) and 4 Å MS
(50 mg) were stirred in redistilled MTBE (0.4 mL) at 0 ˚C.
Then nitroolefin 3a (14.0 mg, 0.12 mmol)
in MTBE (0.1 mL) was added. After 6 d, product 4a was
isolated by FC on SiO2 eluted with EtOAc-PE
as an oil; 24.5 mg, 79% yield; R
f
= 0.5
(PE-EtOAc, 15:1); [α]D
²0 -101.3
(c 1.00 in CH2Cl2);
82% ee, determined by HPLC analysis [Daicel chiralcel
OD, n-hexane-i-PrOH (95:5),
1.0 mL/min, λ = 254
nm, t
R(major) = 7.70
min, t
R(minor) = 11.16
min]. ¹H NMR (400 MHz, CDCl3): δ = 7.44-7.41
(m, 2 H), 7.35-7.33 (m, 3 H), 7.21-7.17 (m,
2
H), 7.04-6.98 (m, 3 H), 5.29 (dd, J = 9.2,
7.2 Hz, 1 H), 4.80 (t, J = 7.2
Hz, 1 H), 4.74 (d, J = 9.2
Hz, 1 H), 2.08-2.03 (m, 1 H), 1.14 (d, J = 6.8
Hz, 3 H), 1.02 (d, J = 6.8
Hz, 3 H) ppm. ¹³C NMR (50 MHz, CDCl3): δ = 148.1,
133.3, 129.2, 128.8, 128.7, 128.2, 124.1, 116.4, 94.5, 84.7, 73.0,
30.7, 19.0, 17.9 ppm. ESI-HRMS: m/z calcd
for C18H20N2O3 + Na:
335.1372; found: 335.1320.
General Procedure for the Synthesis of 2,3-Diamino-propanol 5 Compound 4a (31 mg, 0.1 mmol, 99% ee) and NiCl2˙6H2O (100 mg, 0.4 mmol) were stirred in MeOH (1 mL) and THF (0.5 mL) at r.t. for 10 min. Then NaBH4 (33 mg, 0.9 mmol) was added in portions at 0 ˚C. After stirring for 5 min, EtOAc (5 mL) and H2O (5 mL) were added. After filtration, the filtrate was extracted with EtOAc (2 × 10 mL). The combined organic layers were dried over Na2SO4 and concentrated. The residue and (Boc)2O (26 mg, 0.12 mmol) were dissolved in CH2Cl2 and stirred for 2 h. The solvent was then removed in vacuo, and the residue was purified by flash chromatography on SiO2 (EtOAc-PE) to give N-Boc-diaminopropanol 5 as an oil; 35 mg, 91% yield for two steps; R f = 0.4 (PE-EtOAc, 5:1); [α]D ²0 +18.6 (c 0.70 in CH2Cl2); 99% ee, determined by HPLC analysis [Daicel chiralcel AD, n-hexane-i-PrOH (90:10), 1.0 mL/min, λ = 254 nm, t R(minor) = 5.48 min, t R(major) = 9.32 min]. ¹H NMR (400 MHz, CDCl3): δ = 7.33-7.28 (m, 4 H), 7.23-7.21 (m, 1 H), 7.11-7.07 (m, 2 H), 6.70-6.67 (m, 1 H), 6.59-6.57 (m, 2 H), 5.46 (s, 1 H), 5.12 (d, J = 8.4 Hz, 1 H), 4.84-4.77 (m, 1 H), 4.03 (s, 1 H), 3.54 (s, 1 H), 1.86-1.84 (m, 1 H), 1.30 (s, 9 H), 1.06 (d, J = 6.8 Hz, 3 H), 1.02 (d, J = 6.4 Hz, 3 H) ppm. ¹³C NMR (50 MHz, CDCl3): δ = 155.4, 147.0, 140.6, 129.1, 128.5, 127.1, 126.9, 118.3, 114.8, 79.6, 78.8, 58.6, 56.1, 29.9, 28.2, 19.4, 18.2 ppm. ESI-HRMS: m/z calcd for C23H32N2O3 + H: 385.2491; found: 385.2453.
19CCDC-700901 (6) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.