Synthesis
DOI: 10.1055/a-2323-0721
paper

BF3·OEt2-Mediated (3+2) Cycloaddition Reactions of Donor-Acceptor Cyclopropanes (DACs) with Cyanamides: Access to Cyclic Amidines

Braj Gopal
,
Prasoon Raj Singh
,
Shubham Bhatt
,
Avijit Goswami
Authors wish to acknowledge for financial support from SERB, Department of Science and Technology, New Delhi, India and IIT Ropar for infrastructural facilities. B.G. and P.R.S would like to thank Indian Institute of Technology Ropar (IIT Ropar) for their fellowships.


This article is dedicated to Prof. Dr. Goverdhan Mehta on the occasion of his 81st birthday.

Abstract

A BF3·OEt2-promoted facile synthesis of cyclic amidines (2-amino-1-pyrrolines) has been developed via the (3+2)-cycloaddition of cyanamides with donor-acceptor cyclopropanes (DACs). In addition to this, the protocol has been successfully extended to construct a dimerized amidine derivative and gram-scale synthesis with great efficiency.

Supporting Information



Publication History

Received: 26 February 2024

Accepted after revision: 10 May 2024

Accepted Manuscript online:
13 May 2024

Article published online:
04 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Guile SD, Alcaraz L, Birkinshaw TN, Bowers KC, Ebden MR, Furber M, Stocks MJ. J. Med. Chem. 2009; 52: 3123
    • 1b Oehlrich D, Prokopcova H, Gijsen HJ. M. Bioorg. Med. Chem. Lett. 2014; 24: 2033
    • 1c Oleksyszyn J, Boduszek B, Kam CM, Powers JC. J. Med. Chem. 1994; 37: 226
    • 1d Stamford A, Strickland C. Curr. Opin. Chem. Biol. 2013; 17: 320
    • 1e Huang Y, Yi W, Sun Q, Yi F. Adv. Synth. Catal. 2018; 360: 3074
    • 1f McCarthy JR, Wright DL, Schuster AJ, Abdallah AH, Shea PJ, Eysters R. J. Med. Chem. 1985; 28: 1721
    • 2a Greenhill JV, Lue P. Amidines and Guanidines in Medicinal Chemistry . In Progress in Medicinal Chemistry, Vol. 30. Ellis GP, Luscombe DK. Elsevier; Amsterdam: 1993: 206-306
    • 2b Ma Y, De S, Chen C. Tetrahedron 2015; 71: 1145
    • 3a Li G, Zhao M, Xie J, Yao Y, Mou L, Zhang X, Guo X, Sun W, Wang Z, Xu J, Xue J, Hu T, Zhang M, Li M, Hong L. Chem. Sci. 2020; 11: 3586
    • 3b Shriner RL, Neumann FW. Chem. Rev. 1944; 35: 351
    • 3c Zhang Z, Huang B, Qiao G, Zhu L, Xiao F, Chen F, Fu B, Zhang Z. Angew. Chem. Int. Ed. 2017; 56: 4320
    • 3d Veeranna KD, Das KK, Baskaran S. Angew. Chem. Int. Ed. 2017; 56: 16197
    • 3e Saluste C, Crumpler S, Furber M, Whitby R. Tetrahedron Lett. 2004; 45: 6995
  • 4 Hu K, Liu R, Zhou X. Org. Lett. 2021; 23: 6946
  • 5 Hou J, Yang G, Chai Z. J. Org. Chem. 2022; 87: 453
    • 6a Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
    • 6b Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
    • 6c Ghosh K, Das S. Org. Biomol. Chem. 2021; 19: 965
    • 6d Singh P, Varshnaya RK, Dey R, Banerjee P. Adv. Synth. Catal. 2020; 362: 1447
    • 6e Mel’nikov MY, Budynina EM, Ivanova OA, Trushkov IV. Mendeleev Commun. 2011; 21: 293
    • 7a Werz DB, Biju AT. Angew. Chem. Int. Ed. 2020; 59: 3385
    • 7b Grover HK, Emmett MR, Kerr MA. Org. Biomol. Chem. 2015; 13: 655
    • 7c Yu M, Pagenkopf BL. Tetrahedron 2005; 61: 321
    • 8a Beal RB, Dombroski MA, Snider BB. J. Org. Chem. 1986; 51: 4391
    • 8b Yadav VK, Sriramurthy V. Angew. Chem. Int. Ed. 2004; 43: 2669
    • 8c Mackay WD, Fistikci M, Carris RM, Johnson JS. Org. Lett. 2014; 16: 1626
    • 9a Kang Y.-B, Sun X.-L, Tang Y. Angew. Chem. Int. Ed. 2007; 46: 3918
    • 9b Xu P.-W, Liu J.-K, Shen L, Cao Z.-Y, Zhao X.-L, Yan J, Zhou J. Nat. Commun. 2017; 8: 1619
    • 9c Johansen MB, Kerr MA. Org. Lett. 2008; 10: 3497
    • 9d Gopal B, Singh PR, Kumar M, Goswami A. J. Org. Chem. 2023; 88: 132
    • 10a Ivanova OA, Budynina EM, Grishin YK, Trushkov IV, Verteletskii PV. Eur. J. Org. Chem. 2008; 2008: 5329
    • 10b Xu H, Hu J.-L, Wang L, Liao S, Tang Y. J. Am. Chem. Soc. 2015; 137: 8006
    • 10c Augustin AU, Merz JL, Jones PG, Mlostoń G, Werz DB. Org. Lett. 2019; 21: 9405
  • 11 Yang L, He J, Wang H, Xu W, Zhang X, Lang M, Wang J, Peng S. ACS Catal. 2023; 13: 5752
    • 12a Yu M, Pagenkopf BL. J. Am. Chem. Soc. 2003; 125: 8122
    • 12b Pagenkopf BL, Vemula N. Eur. J. Org. Chem. 2017; 2017: 2561
    • 12c Tamilarasan VJ, Srinivasan K. J. Org. Chem. 2019; 84: 8782
    • 12d Sathishkannan G, Srinivasan K. Org. Lett. 2011; 13: 6002
    • 12e Singh PR, Kalaramna P, Ali S, Goswami A. Eur. J. Org. Chem. 2021; 2021: 4683
    • 12f Singh PR, Gopal B, Kumar M, Goswami A. Org. Biomol. Chem. 2022; 20: 4933
    • 13a Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1965; 87: 1353
    • 13b Goldberg AF. G, O’Connor NR, Craig RA. II, Stoltz BM. Org. Lett. 2012; 14: 5314
    • 13c Talukdar R, Tiwari DP, Saha A, Ghorai MK. Org. Lett. 2014; 16: 3954
    • 13d Pohlhaus PD, Sanders SD, Parsons AT, Li W, Johnson JS. J. Am. Chem. Soc. 2008; 130: 8642
    • 13e Andreev IA, Ratmanova NK, Augustin AU, Ivanova OA, Levina II, Khrustalev VN, Werz DB, Trushkov IV. Angew. Chem. Int. Ed. 2021; 60: 7927
    • 14a González-Fernández R, Álvarez D, Crochet P, Cadierno V, Menéndez MI, López R. Catal. Sci. Technol. 2020; 10: 4084
    • 14b Ried W, Kümbel B, Tauer M.-L. Liebigs Ann. Chem. 1984; 564