Synthesis 2024; 56(03): 445-454
DOI: 10.1055/a-2195-7907
paper

Synthesis of (–)-Virginiae Butanolide A (VB-A)

Jonas Donges
,
Andrea Frank
,
Dieter Schollmeyer
,
Udo Nubbemeyer
This work was supported by the ʻNaturstoffzentrum RheinlandPfalz’. The authors are grateful for helpful discussions and financial aid.


Dedicated to Prof. Dr. Peter Metz on the occasion of his 70th birthday

Abstract

The 2-(1′-hydroxyalkyl) paraconyl alcohols (–)-VB-A and (–)-SCB-5 are known as highly active signaling molecules within antibiotics production in Streptomyces sp. These γ-butyrolactone type compounds are epimeric at the 1′-OH-group. A direct synthesis of (–)-VB-A from (–)-SCB-5 that uses a late-stage inversion of the 1′-hydroxy group is not favored because of side reactions of the carbinol in β-position to the lactone C=O function. Therefore, an orthogonally protected 1,4-diol incorporating the central syn/anti 1′,2,3-stereotriad as described within the (–)-SCB-5 synthesis was used as an advanced intermediate to generate (–)-VB-A, too. A combination of protecting group operations and a 1′-OH group inversion via oxidation and diastereoselective reduction delivered the anti/anti 1′,2,3-stereotriad. Final transformations related to that as described for (–)-SCB-5 enabled completion of the (–)-VB-A-synthesis.

Supporting Information



Publikationsverlauf

Eingereicht: 22. September 2023

Angenommen nach Revision: 20. Oktober 2023

Accepted Manuscript online:
20. Oktober 2023

Artikel online veröffentlicht:
28. November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Arakawa K, Suzuki T. In Natural Products from Actinomycetes . Rai RV, Bai JA. Springer Nature; Singapore: 2022: 167
    • 1b Bai JA, Rai RV. In Natural Products from Actinomycetes . Rai RV, Bai JA. Springer Nature; Singapore: 2022: 223
    • 1c Willey JM, Gaskell AA. Chem. Rev. 2011; 111: 174
    • 2a Kong D, Wang X, Nie J, Niu G. Front. Microbiol. 2019; 10: Art-No. 2927
    • 2b Takano E. Curr. Opin. Microbiol. 2006; 9: 287
    • 2c Bibb MJ. Curr. Opin. Microbiol. 2005; 8: 208

      A-factor:
    • 3a Kleiner EM, Pliner SA, Soifer VS, Onoprienko VV, Balasheva TA, Rozynov BV, Khokhlov AS. Bioorg. Khim. 1976; 2: 1142
    • 3b Hara O, Beppu T. J. Antibiot. 1982; 35: 349
    • 3c Anisova NL, Blinova IN, Efremenkova OV, Koz’min LP, Onoprienko VV. Izv. Akad. Nauk. SSSR Biol. 1984; 1: 98
    • 3d Horinouchi S, Beppu T. Proc. Jpn. Acad., Ser. B Phys. Biol. Sci. 2007; 83: 277
    • 3e Biosynthesis: Kato J, Funa N, Watanae H, Ohnishi Y, Horinouchi S. Proc. Nat. Acad. Sci. U.S.A. 2007; 104: 2378
    • 4a Yamada Y, Sugamura K, Kondo K, Yanagimoto M, Okada H. J. Antibiot. 1987; 40: 496
    • 4b Kondo K, Higuchi Y, Sakuda S, Nihira T, Yamada Y. J. Antibiot. 1989; 42: 1873
    • 4c Ohashi H, Zheng YH, Nihira T, Yamada Y. J. Antibiot. 1989; 42: 1191
    • 5a Sidda JD, Poon V, Song L, Wang W, Yang K, Corre C. Org. Biomol. Chem. 2016; 14: 6390
    • 5b Zou Z, Du D, Zhang Y, Zhang J, Niu G, Tan H. Mol. Microbiol. 2014; 94: 490
    • 5c Hsiao N.-H, Nakayama S, Merlo ME, de Vries M, Bunet R, Kitani S, Nihira T, Takano E. Chem. Biol. 2009; 16: 951
    • 5d Takano E, Nihira T, Hara Y, Jones JJ, Gershater CJ. L, Yamada Y, Bibb MJ. J. Biol. Chem. 2000; 275: 11010
    • 6a Gräfe U, Reinhardt G, Schade W, Eritt I, Fleck WF, Radics L. Biotechnol. Lett. 1983; 5: 591

    • Analyzing the data published so far, Gräfe (VB) factor 1 and VB-A display the same structures, Gräfe-VB-factors 2 and 3 display VB stereochemistry.
    • 6b Gräfe U, Schade W, Eritt I, Fleck WF, Radies L. J. Antibiot. 1982; 35: 1722

    • Analyzing the data published so far, Gräfe-SCB-factor 1 and SCB-1 display the same structures.

      Thirty strains of 203 tested produce A-factor, 10 strains of 40 streptomyces and 11 endophytic actinomyces tested produce SCB-GBLs, the same number produce VB type compounds. However, GBL production in culture media occurred in very low concentrations hindering exact distribution studies and evaluation of the biological significance. Genetic analyses of Streptomyces strains suggest, that >60% use GBL-type ligands, new bioactive compounds might be identified in future:
    • 7a Polkade AV, Mantri SS, Patwekar UJ, Jangid K. Front. Microbiol. 2016; 7: 131
    • 7b Thao NB, Kitani S, Nitta H, Tomioka T, Nihira T. J. Antibiot. 2017; 70: 1004
    • 7c For further details see ref. 2 and literature cited therein.

      Focusing on almost qualitative bioactivity tests (semi-quantitative kanamycin bioassay), VB GBLs are significantly less active in SCB producing Streptomyces (e.g., SCB-1 and Gräfe-VB-factor 2, ref. 5c), and, vice versa, SCB type compounds display lower activity in VB producing bacteria:
    • 8a Kinoshita H, Ipposhi H, Okamoto S, Nakano H, Nihira T, Yamada Y. J. Bacteriol. 1997; 179: 6986
    • 8b Mizuno K, Sakuda S, Nihira T, Yamada Y. Tetrahedron 1994; 50: 10849
    • 8c Nihira T, Shimizu Y, Kim YS, Yamada Y. J. Antibiot. 1988; 41: 1828

    • However, examples for similar activities for VB and SCB-type Compounds are known, too [e.g., VB (ref. 9i) and SCB (ref. 9i), ref. 5c)].
    • 8d For first quantitative tests involving enantiopure/enantioenriched (diastereomerically pure?) GBLs, see: Wilbanks LE, Hennigan HE, Martinez-Brokaw CD, Lakkis H, Thormann S, Eggly AS, Buechel G, Parkinson EI. ACS Chem. Biol. 2023; 18: 1624

    • Prima facie, the natural enantiomer of a defined GBL was found to be active, the (inactive) enantiomer could be disregarded (ref. 5c) enabling to use en gros racemic mixtures within the tests. For a counterexample (active enantiomer, inactive racemate), see:
    • 8e Zhang Y, Wang M, Tian J, Liu J, Guo Z, Tang W, Chen Y. Appl. Microbiol. Biotechnol. 2020; 104: 1695

      Biosynthesis VB-A:
    • 9a Shikura N, Yamamura J, Nihira T. J. Bacteriol. 2002; 184: 5151
    • 9b VB-A and SCB-5: Shikura S, Nihira T, Yamada Y. Biochim. Biophys. Acta 2000; 1475: 329
    • 9c Sakuda S, Tanaka S, Mizuna K, Sukcharoen O, Nihira T, Yamada Y. J. Chem. Soc., Perkin Trans. 1 1993; 2309
    • 9d Sakuda S, Higashi A, Tanaka S, Nihira T, Yamada Y. J. Am. Chem. Soc. 1992; 114: 663
    • 9e Sakuda S, Higashi A, Nihira T, Yamada Y. J. Am. Chem. Soc. 1990; 112: 898

      Chemical syntheses of optically active VB-A:
    • 10a Mori K, Chiba N. Liebigs Ann. Chem. 1990; 31

    • Structure correction:
    • 10b Sakuda S, Yamada Y. Tetrahedron Lett. 1991; 32: 1817

    • For syntheses of further optically active VB-GBL:
    • 10c Elsner P, Jiang H, Nielsen JB, Pasi F, Jørgensen KA. Chem. Commun. 2008; 5827
    • 10d Takabe K, Mase N, Matsumura H, Hasegawa T, Iida Y, Kuribayashi H, Adachi K, Yoda H, Ao M. Bioorg. Med. Chem. Lett. 2002; 12: 2295
    • 11a Donges J, Hofmann S, Brüggemann M, Frank A, Schollmeyer D, Nubbemeyer U. Eur. J. Org. Chem. 2021; 3345
    • 11b Donges J, Hofmann S, Walter JC, Reichertz J, Brüggemann M, Frank A, Nubbemeyer U. Synthesis 2021; 53: 2632
    • 11c Donges J. Dissertation . University of Mainz; Germany: 2023

      Intermolecular Mitsunobu reaction:
    • 12a Tuccinardi JP, Wood JL. J. Am. Chem. Soc. 2022; 144: 20539
    • 12b Nesic M, Kincanon MM, Ryffel DB, Sarlah D. Tetrahedron 2020; 76: art. no. 131318
    • 13a Nagaoka H, Kobayashi K, Yamada Y. Tetrahedron Lett. 1988; 29: 5945
    • 13b For further examples see ref. 10a,c.

      In analogy to:
    • 14a Nicolaou KC, Webber SE. Synthesis 1986; 453

    • Application of further conditions failed:
    • 14b Sarkal AM, Kumar A, Appajee C. J. Org. Chem. 2018; 83: 4167
    • 14c Olah GA, Welch JT, Vankar YD, Nojima M, Kerekes I, Olah JA. J. Org. Chem. 1979; 44: 3872
    • 14d For a review, see: Crouch RD. Tetrahedron 2004; 60: 5833
    • 14e The use of stronger acids caused γ-lactone 4 formation.
  • 15 For experimental details and data of hydroxyamide 2, see Supporting Information.
  • 16 The zwitterionic aza-Claisen rearrangement enabled syntheses of both enantiomers of ester 3 and carbinol 5, respectively (ref. 11a). For completion of both, (–)-VB-A total synthesis and (+)-VB-A (formal) total synthesis, several strategies had been tested involving only one of the enantiomer series. For clarification, all intermediates heading for (–)-VB-A 15, the simple molecule numbers are used. All intermediates leading to formal (+)-VB-A ent-15 are presented using the prefix ‘ent’.

    • Independent of acidic, neutral, and basic reaction conditions the γ-lactones 4 were obtained. OH group inversion via intramolecular Mitsunobu reaction would have required generating the γ-hydroxy carboxylic acid as a reactant:
    • 17a Dujardin G, Rossignol S, Brown E. Synthesis 1998; 763
    • 17b Matinkhoo K, Wong AA. W. L, Hambira CM, Kato B, Wei C, Müller C, Hechler T, Braun A, Gallo F, Pahl A, Perrin DM. Chem. Eur. J. 2021; 27: 10282
    • 17c Morgan TE. F, Riley LM, Tavares AA. S, Sutherland A. J. Org. Chem. 2021; 86: 14054
    • 17d Cui B, Yu J, Yu F.-C, Li Y.-M, Chang K.-J, Shen Y. RSC Adv. 2015; 5: 10386
    • 17e Seo J, Martásek P, Roman LJ, Silverman RB. Bioorg. Med. Chem. 2007; 15: 1928

    • Furthermore, the intermediate OH group activation as a sulfonate and subsequent intramolecular substitution failed, too:
    • 17f Zhang HL, Zhao G, Ding Y, Wu B. J. Org. Chem. 2005; 70: 4954
    • 17g Miftakhov MS, Adler ME, Komissarova NG, Tolstikov GA. Russ. J. Org. Chem. USSR (Engl. Transl.) 1990; 26: 1274
    • 17h Nakamura E, Kuwajima I. J. Am. Chem. Soc. 1985; 107: 2138
    • 17i Remark. In contrast, lactonization of the corresponding acid of 3 under similar conditions delivered selectively lactone 4a in 68% yield. For details see ref 11a.
  • 18 For experimental details and data of γ-lactones 4, see Supporting Information.
    • 19a Halder J, Das D, Nanda S. Org. Biomol. Chem. 2018; 16: 2549
    • 19b Nallasivam JL, Fernandes RA. J. Am. Chem. Soc. 2016; 138: 13238
    • 20a Mandabi A, Ganin H, Krief P, Rayo J, Meijer MM. Chem. Commun. 2014; 50: 5322
    • 20b For experimental details and data of the ent-trityl ether generated from carbinol ent-5, see Supporting Information.
  • 21 Starting from ent-5, ent-6 had been synthesized, too. For data of the enantiomers see Supporting Information.
    • 22a Gao J, Rao P, Xu K, Wang S, Wu Y, He C, Ding H. J. Am. Chem. Soc. 2020; 142: 4592
    • 22b Tanaka T, Kogure N, Kitajima M, Takayama H. J. Org. Chem. 2009; 74: 8675
    • 22c Petrovic G, Cekovic Z. Synthesis 2004; 1671
    • 22d Dodge JA, Trujillo JI, Presnell M. J. Org. Chem. 1994; 59: 234
  • 23 For experimental details and data of the mesylate 7, see Supporting Information.
    • 24a Magdycz M, Jarosz S. Tetrahedron: Asymmetry 2013; 24: 1402
    • 24b Shi X.-X, Shen C.-L, Yao J.-Z, Nie L.-D, Quan N. Tetrahedron: Asymmetry 2010; 21: 277
    • 24c Murakami N, Sugimoto M, Morita M, Kobayashi M. Chem. Eur. J. 2001; 7: 2663

    • Substitution via nitrite intermediate:
    • 24d Radüchel B. Synthesis 1980; 292
  • 25 Product ratios were determined analyzing the 1H NMR spectrum of the product mixture. For comparison, the acetate of syn/anti pivalate 6 was synthesized. For procedures and data, see Supporting Information.
    • 26a Anelli PC, Montanari R, Quici S. Org. Synth. 1990; 69: 212
    • 26b For a procedure data of the tetrahydropyran derivative, see Supporting Information.
    • 27a Frossard TM, Trapp N, Altmann K.-H. Eur. J. Org. Chem. 2022; e202200761
    • 27b Yang M, Yang X, Sun H, Li A. Angew. Chem. Int. Ed. 2016; 55: 2851
    • 27c Rej RK, Acharyya RK, Nanda S. Tetrahedron 2016; 72: 4931
    • 27d Zhu D, Yu B. J. Am. Chem. Soc. 2015; 137: 15098

      NaBH4 reduction:
    • 28a Takayama H, Odaka H, Aimi N, Sakai S. Tetrahedron Lett. 1990; 31: 5483
    • 28b Takayama H, Aimi S. Tetrahedron Lett. 1990; 31: 1287
    • 28c Tanaka T, Okamura N, Bannai K, Hazato A, Sugiura S, Tomimori K, Manabe K, Kurozumi S. Tetrahedron 1986; 42: 6747

      Mosher ester:
    • 29a Hoye TR, Jeffrey CS, Shao F. Nat. Protoc. 2007; 2: 2451
    • 29b Dale JA, Dull DL, Mosher HS. J. Org. Chem. 1969; 34: 2543

      CBS:
    • 30a Yannikouros GP, Kalaritis P, Gamage CP, Arefyev DV. PCT Int. Appl WO 2015/48736, 2015
    • 30b Boebel TA, Lu Y, Meyer KG, Yao C, Daeuble JF, Bravo-Altamirano K, Nugent BM. PCT Int. Appl WO 2016/7529, 2015
    • 30c Jones TK, Mohan JJ, Xavier LC, Blacklock JT, Mathre DJ, Sohar P, Jones ET. T, Reamer RA, Roberts RE, Grabowski EJ. J. J. Org. Chem. 1991; 56: 763
    • 30d For a review, see: Corey EJ, Helal JC. Angew. Chem. Int. Ed. 1998; 37: 1986
    • 30e Focusing on chemical yield, chemo- and diastereoselectivity, the (R)-CBS method represents the best compromise until now.

      Iodocyclization: 5-exo-trig:
    • 31a Ramdular A, Woerpel KA. Org. Lett. 2020; 22: 4113
    • 31b Hsueh N.-C, Hsiao Y.-T, Chang M.-Y. Tetrahedron 2017; 73: 4398
    • 31c Konda S, Khatravath M, Mallurwar NK, Rao P, Sripelly S, Iqbal J, Arya P. Synthesis 2016; 48: 1663
    • 31d Goodwin JA, Ballesteros CF, Aponick A. Org. Lett. 2015; 17: 5574
    • 31e Lee AS.-Y, Tsao K.-W, Chang Y.-T, Chu S.-F. Tetrahedron Lett. 2007; 48: 6790
    • 31f See also ref. 19a

    • 5-endo-trig:
    • 31g Yang W, Wang Z, Sun J. Angew. Chem. Int. Ed. 2016; 55: 6954
    • 31h See also ref. 19b
    • 32a Sahara Y, Cui J, Furutachi M, Chen J, Watanabe T, Shibasaki M. Synthesis 2017; 49: 69
    • 32b Körner M, Hiersemann M. Synthesis 2016; 48: 2466
    • 32c Heescher C, Schollmeyer D, Nubbemeyer U. Eur. J. Org. Chem. 2013; 4399
    • 33a Bege M, Bereczki I, Herczeg M, Kicsák M, Eszenyi D, Herczegh P, Borbás A. Org. Biomol. Chem. 2017; 15: 9226
    • 33b Nie S, Chen X, Ma Y, Li W, Yu B. Carbohydr. Res. 2016; 432: 36
    • 33c Li W, Niu Y, Xiong D.-C, Cao X, Ye X.-S. J. Med. Chem. 2015; 58: 7972
  • 34 CCDC 2296129 (XVI) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 35 The X-ray analysis of the (–)-SCB-5 derivative enables validation of the GBL structure corrections as published by Yamada (ref 10b) applying NOE techniques for elucidation of the relative configurations of the target molecules stereogenic centers. For spectra and data of bis(dinitro benzoate) of (–)-VB-A, see Supporting Information.