Synthesis 2016; 48(15): 2466-2482
DOI: 10.1055/s-0035-1561614
paper
© Georg Thieme Verlag Stuttgart · New York

Advances and Setbacks in the Total Synthesis of the Fungal Metabolite Curvicollide C: Synthesis and Elaboration of Non-Aldol Stereotriads from Gosteli-Type Allyl Vinyl Ethers

Marleen Körner
Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany   Email: martin.hiersemann@tu-dortmund.de
,
Martin Hiersemann*
Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany   Email: martin.hiersemann@tu-dortmund.de
› Author Affiliations
Further Information

Publication History

Received: 16 January 2016

Accepted after revision: 11 March 2016

Publication Date:
10 May 2016 (online)


Abstract

Advances and setbacks are reported in regard to the asymmetric total synthesis of the fungal metabolite curvicollide C relying on a synthetic strategy that exploits non-aldol stereotriads as chiral building blocks. A catalytic asymmetric Gosteli–Claisen rearrangement, a two-step aldehyde-to-alkyne-homologation, and a Julia–Kocienski olefination served as key C/C-connecting transformations.

Supporting Information

 
  • References

  • 1 Pouliot M, Jeanmart S. J. Med. Chem. 2016; 59: 497
  • 2 Wong SS. W, Samaranayake LP, Seneviratne CJ. Drug Discovery Today 2014; 19: 1721
  • 3 Paulussen C, Boulet GA. V, Cos P, Delputte P, Maes LJ. R. M. Drug Discovery Today 2014; 19: 1380
  • 4 Morace G, Perdoni F, Borghi E. J. Glob. Antimicrob. Resist. 2014; 2: 254
  • 5 Favre-Godal Q, Dorsaz S, Queiroz EF, Marcourt L, Ebrahimi SN, Allard P.-M, Voinesco F, Hamburger M, Gupta MP, Gindro K, Sanglard D, Wolfender J.-L. J. Nat. Prod. 2015; 78: 2994
  • 6 Myung K, Klittich CJ. R. Drug Discovery Today 2015; 20: 7
  • 7 Vengurlekar S, Sharma R, Trivedi P. Pharmacogn. Rev. 2012; 6: 91
  • 8 Che Y, Gloer JB, Wicklow DT. Org. Lett. . 2004; 6: 49
  • 9 Ferreira EL. F, Williams DE, Ioca LP, Morais-Urano RP, Santos MF. C, Patrick BO, Elias LM, Lira SP, Ferreira AG, Passarini MR. Z, Sette LD, Andersen RJ, Berlinck RG. S. Org. Lett. 2015; 17: 5152

    • For application of β,γ-branched δ,ε-unsaturated α-keto esters in target-oriented synthesis, see:
    • 10a Pollex A, Hiersemann M. Org. Lett. 2005; 7: 5705
    • 10b Stiasni N, Hiersemann M. Synlett 2009; 2133
    • 10c Gille A, Hiersemann M. Org. Lett. 2010; 12: 5258
    • 10d Becker J, Butt L, von Kiedrowski V, Mischler E, Quentin F, Hiersemann M. Org. Lett. 2013; 15: 5982
    • 10e Becker J, Butt L, von Kiedrowski V, Mischler E, Quentin F, Hiersemann M. J. Org. Chem. 2014; 79: 3040
    • 11a Körner M, Hiersemann M. Org. Lett. 2007; 9: 4979
    • 11b Körner M, Hiersemann M. Synlett 2006; 121
    • 12a Paterson I, Lyothier I. Org. Lett. 2004; 6: 4933
    • 12b Izzo I, Scioscia M, Del Gaudio P, De Riccardis F. Tetrahedron Lett. 2001; 42: 5421
  • 13 Young IS, Kerr MA. J. Am. Chem. Soc. 2007; 129: 1465
    • 14a Rodebaugh R, Debenham JS, Fraser-Reid B. Tetrahedron Lett. 1996; 37: 5477
    • 14b Park MH, Takeda R, Nakanishi K. Tetrahedron Lett. 1987; 28: 3823
    • 15a Tanaka T, Oikawa Y, Hamada T, Yonemitsu O. Tetrahedron Lett. 1986; 27: 3651
    • 15b Oikawa Y, Tanaka T, Horita K, Yonemitsu O. Tetrahedron Lett. 1984; 25: 5397
    • 15c Oikawa Y, Yoshioka T, Yonemitsu O. Tetrahedron Lett. 1982; 23: 885
    • 15d For selective silyl ether cleavage using NaIO4 in THF–H2O (4:1), see: Li J, Menche D. Synthesis 2009; 1904
    • 15e For the DDQ-mediated oxidative cleavage of allylic silyl ethers to enals and enones, see: Paterson I, Cowden CJ, Rahn VS, Woodrow MD. A. Synlett 1998; 915
  • 16 Hanessian S, Lavallee P. Can. J. Chem. 1975; 53: 2975
  • 17 We found that the E/Z selectivity heavily depends on the nature of the reagent and the conditions. For instance, subjecting the ynoate to a reagent prepared from MeLi (6 equiv) and CuI (3 equiv) in Et2O or THF at –78 °C and then at 0 °C led to the formation of the Z-configured enoate. Furthermore, using reagents prepared from MeMgBr (3 equiv) and CuBr·SMe2 (4 equiv) or MeMgBr (4 equiv) and CuI (3 equiv) led to inferior yields and E/Z selectivities.
  • 18 Williams DR, Fromhold MG, Earley JD. Org. Lett. 2001; 3: 2721
  • 19 Gritter RJ, Wallace TJ. J. Org. Chem. 1959; 24: 1051
  • 20 Blakemore PR, Cole WJ, Kocienski PJ, Morley A. Synlett 1998; 26
  • 21 Corey EJ, Venkateswarlu A. J. Am. Chem. Soc. 1972; 94: 6190
  • 22 Sabitha G, Syamala M, Yadav JS. Org. Lett. 1999; 1: 1701
    • 23a Abraham L, Czerwonka R, Hiersemann M. Angew. Chem. Int. Ed. 2001; 40: 4700
    • 23b Abraham L, Körner M, Schwab P, Hiersemann M. Adv. Synth. Catal. 2004; 346: 1281
    • 23c Abraham L, Körner M, Hiersemann M. Tetrahedron Lett. 2004; 45. 3647
  • 24 Yield and diastereoselectivity were significantly affected by the scale of the reduction. Thus, the reduction was run in four separated reaction vessels in parallel and then combined for workup. See the experimental section for details.
  • 25 Dess DB, Martin JC. J. Org. Chem. 1983; 48: 4155
  • 26 Seyferth D, Grim SO, Read TO. J. Am. Chem. Soc. 1961; 83: 1617
  • 27 Usage of n-BuLi instead of LDA led to a product mixture.
    • 28a Desai NB, McKelvie N, Ramirez F. J. Am. Chem. Soc. 1962; 84: 1745
    • 28b Corey EJ, Fuchs PL. Tetrahedron Lett. 1972; 13: 3769
  • 30 Nakano M, Kikuchi W, Matsuo J.-i, Mukaiyama T. Chem. Lett. 2001; 30: 424
  • 31 For the synthesis of (R)-12, see ref. 12a.
  • 32 Nagai K, Doi T, Sekiguchi T, Namatame I, Sunazuka T, Tomoda H, Ōmura S, Takahashi T. J. Comb. Chem. 2006; 8: 103
  • 33 Fuganti C, Grasselli P, Servi S, Zirotti C. Tetrahedron Lett. 1982; 23: 4269
  • 34 Evans DA, Ennis MD, Mathre DJ. J. Am. Chem. Soc. 1982; 104: 1737
  • 35 Dale JA, Dull DL, Mosher HS. J. Org. Chem. 1969; 34: 2543
  • 36 Mitsunobu O, Yamada M. Bull. Chem. Soc. Jpn. 1967; 40: 2380
  • 37 Schultz HS, Freyermuth HB, Buc SR. J. Org. Chem. 1963; 28: 1140
  • 38 Panek JS, Jain NF. J. Org. Chem. 1998; 63: 4572
  • 39 One-pot procedure consisting of LDA-mediated elimination and methylation resulted in incomplete conversion.
  • 40 Hart DW, Blackburn TF, Schwartz J. J. Am. Chem. Soc. 1975; 97: 679
  • 41 Smith ND, Mancuso J, Lautens M. Chem. Rev. 2000; 100: 3257

    • For chemoselective DDQ-mediated PMB ether cleavage in the presence of allylic silyl ethers, see:
    • 42a Das S, Abraham S, Sinha SC. Org. Lett. 2007; 9: 2273
    • 42b Lowe JT, Wrona IE, Panek JS. Org. Lett. 2006; 9: 327
    • 42c Williams DR, Walsh MJ, Miller NA. J. Am. Chem. Soc. 2009; 131: 9038
  • 43 Kofron WG, Baclawski LM. J. Org. Chem. 1976; 41: 1879
    • 44a Miescher K. Helv. Chim. Acta 1946; 29: 743
    • 44b Miescher K, Kägi H. Helv. Chim. Acta 1949; 32: 761
    • 44c Stahl E, Kaltenbach U. J. Chromatogr. 1961; 5: 351
  • 45 Still WC, Kahn M, Mitra A. J. Org. Chem. 1978; 43: 2923
  • 46 Gottlieb HE, Kotlyar V, Nudelman A. J. Org. Chem. 1997; 62: 7512
  • 47 Decicco CP, Grover P. J. Org. Chem. 1996; 61: 3534
  • 48 Imai T, Mineta H, Nishida S. J. Org. Chem. 1990; 55: 4986