Synthesis 2024; 56(03): 507-517
DOI: 10.1055/a-2193-5593
paper

A Rearrangement of 4-Phenylbenzo[d]oxazoles to Phenanthridin-4-ols

Anton L. Shatsauskas
a   Laboratory of New Organic Materials, Omsk State Technical University, Mira Ave. 11, 644050 Omsk, Russian Federation
,
Ekaterina S. Keyn
b   Department of Organic and Analytical Chemistry, Omsk F. M. Dostoevsky State University, Mira ave. 55A, Omsk 644077, Russian Federation
,
Anton J. Stasyuk
c   Institut de Química Computacional and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, Girona, Catalonia, 17003, Spain
,
Sergey A. Kirnosov
b   Department of Organic and Analytical Chemistry, Omsk F. M. Dostoevsky State University, Mira ave. 55A, Omsk 644077, Russian Federation
,
Vladislav Yu. Shuvalov
a   Laboratory of New Organic Materials, Omsk State Technical University, Mira Ave. 11, 644050 Omsk, Russian Federation
,
Anastasia S. Kostyuchenko
a   Laboratory of New Organic Materials, Omsk State Technical University, Mira Ave. 11, 644050 Omsk, Russian Federation
,
a   Laboratory of New Organic Materials, Omsk State Technical University, Mira Ave. 11, 644050 Omsk, Russian Federation
b   Department of Organic and Analytical Chemistry, Omsk F. M. Dostoevsky State University, Mira ave. 55A, Omsk 644077, Russian Federation
› Author Affiliations
This work was supported by the Russian Science Foundation (Grant No. 22-13-00356).


Abstract

A new approach was developed for the synthesis of phenanthridin-4-ols and 4-hydroxyphenanthridin-6(5H)-one derivatives in 43–89% yields based on the AlCl3-mediated rearrangement of available 4-phenylbenzo[d]oxazoles and 4-phenyl-1,3-benzoxazol-2(3H)-one. The quantum chemical calculations were used to describe the mechanism and predict the thermodynamic parameters of the reaction under study.

Supporting Information



Publication History

Received: 09 September 2023

Accepted after revision: 17 October 2023

Accepted Manuscript online:
17 October 2023

Article published online:
22 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Phytomedicine 2017; 34: 143
    • 1b Gakunju DM, Mberu EK, Dossaji SF, Gray AI, Waigh RD, Waterman PG, Watkins WM. Antimicrob. Agents Chemother. 1995; 39: 2606
    • 1c Roy M, Liang L, Xiao X, Feng P, Ye M, Liu J. Biomed. Pharmacother. 2018; 107: 615
    • 1d Yang X.-J, Miao F, Yao Y, Cao F.-J, Yang R, Ma Y.-N, Qin B.-F, Zhou L. Molecules 2012; 17: 13026
    • 1e Hatae N, Fujita E, Shigenobu S, Shimoyama S, Ishihara Y, Kurata Y, Choshi T, Nishiyama T, Okada C, Hibino S. Bioorg. Med. Chem. Lett. 2015; 25: 2749
    • 1f Jang B.-C, Park J.-G, Song D.-K, Baek W.-K, Yoo SK, Jung K.-H, Park G.-Y, Lee T.-Y, Suh S.-I. Toxicol. In Vitro 2009; 23: 281
    • 1g Nakanishi T, Suzuki M, Saimoto A, Kabasawa T. J. Nat. Prod. 1999; 62: 864
    • 1h Lasák P, Motyka K, Kryštof V, Stýskala J. Molecules 2018; 23: 2155
    • 1i Slaninová I, Pěnčíková K, Urbanová J, Slanina J, Táborská E. Phytochem. Rev. 2014; 13: 51
  • 2 Gupta R, Luxami V, Paul K. Bioorg. Chem. 2021; 108: 104633
    • 3a Balashova TV, Polyakova SK, Arsenyev MV, Ilichev VA, Kukinov AA, Marugin AV, Rumyantcev RV, Fukin GK, Yablonskiy AN, Bochkarev MN. Eur. J. Inorg. Chem. 2021; 1441
    • 3b Geffroy B, Le Roy P, Prat C. Polym. Int. 2006; 55: 572
    • 4a Nair JJ, Aremu AO, Van Staden J. J. Ethnopharmacol. 2011; 137: 1102
    • 4b Nair JJ, Rárová L, Strnad M, Bastida J, Van Staden J. Bioorg. Med. Chem. Lett. 2012; 22: 6195
    • 4c Habartová K, Cahlíková L, Řezáčová M, Havelek R. Nat. Prod. Commun. 2016; 11: 1587
  • 5 Li Y, Liu Z, Aglyamova G, Chen J, Chen H, Bhandari M, White MA, Rudenko G, Zhou J. Bioorg. Med. Chem. Lett. 2020; 30: 127300
    • 6a Liu F, Venter H, Bi F, Semple SJ, Liu J, Jin C, Ma S. Bioorg. Med. Chem. Lett. 2017; 27: 3399
    • 6b Liu J, Ma R, Bi F, Zhang F, Hu C, Venter H, Semple SJ, Ma S. Bioorg. Med. Chem. Lett. 2018; 28: 1825
  • 7 Kido J, Endo J. Chem. Lett. 1997; 26: 593
  • 8 Talukdar V, Vijayan A, Kumar Katari N, Radhakrishnan KV, Das P. Adv. Synth. Catal. 2021; 363: 1202
    • 9a Blanchot M, Candito DA, Larnaud F, Lautens M. Org. Lett. 2011; 13: 1486
    • 9b Candito DA, Lautens M. Angew. Chem. Int. Ed. 2009; 48: 6713
    • 9c Liang Q, Lin L, Li G, Kong X, Xu B. Chin. J. Chem. 2021; 39: 1948
    • 9d Bao Y, Wang Z, Chen C, Zhu B, Wang Y, Zhao J, Gong J, Han M, Liu C. Tetrahedron 2019; 75: 1450
    • 9e Wang Y.-F, Lonca GH, Le Runigo M, Chiba S. Org. Lett. 2014; 16: 4272
    • 9f Deb I, Yoshikai N. Org. Lett. 2013; 15: 4254
    • 10a Mao L.-L, Zheng D.-G, Zhu X.-H, Zhou A.-X, Yang S.-D. Org. Chem. Front. 2018; 5: 232
    • 10b Devi L, Pokhriyal A, Shekhar S, Kant R, Mukherjee S, Rastogi N. Asian J. Org. Chem. 2021; 10: 3328
    • 10c Matsushita Y, Ochi R, Tanaka Y, Koike T, Akita M. Org. Chem. Front. 2020; 7: 1243
    • 10d An X.-D, Yu S. Org. Lett. 2015; 17: 2692
    • 10e Jiang H, An X, Tong K, Zheng T, Zhang Y, Yu S. Chem. Int. Ed. 2015; 54: 4055
    • 10f Ntsimango S, Ngwira KJ, Bode ML, De Koning CB. Beilstein J. Org. Chem. 2021; 17: 2340
    • 10g Budén ME, Dorn VB, Gamba M, Pierini AB, Rossi RA. J. Org. Chem. 2010; 75: 2206
    • 10h Han W, Zhou X, Yang S, Xiang G, Cui B, Chen Y. J. Org. Chem. 2015; 80: 11580
    • 11a Linsenmeier AM, Williams CM, Bräse S. J. Org. Chem. 2011; 76: 9127
    • 11b Uchiyama K, Hayashi Y, Narasaka K. Synlett 1997; 445
    • 11c Uchiyama K, Ono A, Hayashi Y, Narasaka K. Bull. Chem. Soc. Jpn. 1998; 71: 2945
    • 11d Kessar SV, Pal D, Singh M. Tetrahedron 1973; 29: 177
    • 11e González C, Guitián E, Castedo L. Tetrahedron 1999; 55: 5195
    • 12a Kumar D, Rudrawar S, Chakraborti AK. Aust. J. Chem. 2008; 61: 881
    • 12b Riadi Y, Mamouni R, Azzalou R, Haddad ME, Routier S, Guillaumet G, Lazar S. Tetrahedron Lett. 2011; 52: 3492
    • 12c Kottayil H, Machingal S, Parackal BS. M, Alungal MS, Theresa LV, Govindan A, Krishnapillai S. J. Heterocycl. Chem. 2020; 57: 3310
    • 12d Lim H.-J, Myung D, Lee IY. C, Jung MH. J. Comb. Chem. 2008; 10: 501
    • 12e Nguyen TT, Nguyen X.-TT, Nguyen T.-LH, Tran PH. ACS Omega 2019; 4: 368
    • 12f Meeniga I, Gokanapalli A, Peddiahgari VG. R. Sustain. Chem. Pharm. 2022; 30: 100874
    • 13a Shatsauskas AL, Abramov AA, Chernenko SA, Kostyuchenko AS, Fisyuk AS. Synthesis 2020; 52: 227
    • 13b Fisyuk AS, Kostyuchenko AS, Goncharov DS. Russ. J. Org. Chem. 2020; 56: 1863
    • 13c Shuvalov VYu, Chernenko S. А, Shatsauskas AL, Samsonenko AL, Dmitriev MV, Fisyuk AS. Chem. Heterocycl. Comp. 2021; 57: 764
    • 13d Shuvalov VYu, Rozhkova YS, Plekhanova IV, Kostyuchenko AS, Shklyaev YV, Fisyuk AS. Chem. Heterocycl. Comp. 2022; 58: 7
    • 13e Fisyuk AS, Kulakov IV, Goncharov DS, Nikitina OS, Bogza YP, Shatsauskas AL. Chem. Heterocycl. Comp. 2014; 50: 217
    • 13f Shatsauskas AL, Abramov AA, Saibulina ER, Palamarchuk IV, Kulakov IV, Fisyuk AS. Chem. Heterocycl. Comp. 2017; 53: 186
    • 14a Kulakov IV, Shatsauskas AL, Matsukevich MV, Palamarchuk IV, Seilkhanov TM, Gatilov YV, Fisyuk AS. Synthesis 2017; 49: 3700
    • 14b Shatsauskas AL, Mamonova TE, Stasyuk AJ, Chernenko SA, Slepukhin PA, Kostyuchenko AS, Fisyuk AS. J. Org. Chem. 2020; 85: 10072
  • 15 Shatsauskas AL, Shatalin YV, Shubina VS, Chernenko SA, Kostyuchenko AS, Fisyuk AS. Dyes Pigm. 2022; 204: 110388
  • 16 Sahoo K, Pradhan P, Panda N. Org. Biomol. Chem. 2020; 18: 1820
  • 17 Bhanage BM, Fujita S, Ikushima Y, Arai M. Green Chem. 2004; 6: 78
    • 18a Kulakov IV, Nikitina OS, Fisyuk AS, Goncharov DS, Shul’gau ZT, Gulyaev AE. Chem. Heterocycl. Comp. 2014; 50: 670
    • 18b Saeed A, Channar PA, Arshad M, El-Seedi HR, Abbas Q, Hassan M, Raza H, Seo S. J. Heterocycl. Chem. 2020; 57: 2831
    • 19a Becke AD. J. Chem. Phys. 1993; 98: 5648
    • 19b Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. J. Phys. Chem. 1994; 98: 11623
    • 19c Barone V, Orlandini L, Adamo C. Chem. Phys. Lett. 1994; 231: 295
    • 20a Weigend F, Häser M, Patzelt H, Ahlrichs R. Chem. Phys. Lett. 1998; 294: 143
    • 20b Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005; 7: 3297
  • 21 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision A.03 . Gaussian, Inc; Wallingford CT: 2016
    • 22a Cancès E, Mennucci B, Tomasi J. J. Chem. Phys. 1997; 107: 3032
    • 22b Tomasi J, Mennucci B, Cammi R. Chem. Rev. 2005; 105: 2999
    • 22c Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V. J. Chem. Phys. 2006; 124: 094107
    • 22d Improta R, Barone V, Scalmani G, Frisch MJ. J. Chem. Phys. 2006; 125: 054103
  • 23 Poater J, Duran M, Solà M. Front. Chem. 2018; 6: 561
    • 24a Basak A, Abouelhassan Y, Norwood VM, Bai F, Nguyen MT, Jin S, Huigens RW. Chem. Eur. J. 2016; 22: 9181
    • 24b Kushkevych I, Kos J, Kollar P, Kralova K, Jampilek J. Med. Chem. Res. 2018; 27: 278
    • 24c Kos J, Zadrazilova I, Nevin E, Soral M, Gonec T, Kollar P, Oravec M, Coffey A, O’Mahony J, Liptaj T, Kralova K, Jampilek J. Bioorg. Med. Chem. 2015; 23: 4188
    • 24d Scalese G, Machado I, Correia I, Pessoa JC, Bilbao L, Pérez-Diaz L, Gambino D. New J. Chem. 2019; 43: 17756
    • 24e Thacker PS, Shaikh P, Angeli A, Arifuddin M, Supuran CT. J. Enzyme Inhib. Med. Chem. 2019; 34: 1172
    • 24f Bhat SY, Jagruthi P, Srinivas A, Arifuddin M, Qureshi IA. Eur. J. Med. Chem. 2020; 186: 111860
    • 24g Shah P, Abadi LF, Gaikwad S, Chaudhari D, Kushwah V, Jain S, Bhutani KK, Kulkarni S, Singh IP. ChemistrySelect 2018; 3: 10727
    • 24h Zhang Y, Yang J, Meng T, Qin Y, Li T, Fu J, Yin J. Eur. J. Med. Chem. 2021; 212: 113153
    • 25a Bai J, Qian Y. Dyes Pigm. 2020; 181: 108615
    • 25b Shen B, Wang LF, Zhi X, Qian Y. Sens. Actuators, B: Chem. 2020; 304: 127271
    • 25c Wang X, Jaraquemada-Peláez MD. G, Cao Y, Pan J, Lin K.-S, Patrick BO, Orvig C. Inorg. Chem. 2019; 58: 2275
    • 25d Gharami S, Aich K, Ghosh P, Patra L, Murmu N, Mondal TK. Dalton Trans. 2020; 49: 187
  • 26 Peng C, Schlegel HB. Isr. J. Chem. 1993; 33: 449
    • 27a Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys. 2010; 132: 154104
    • 27b Grimme S, Ehrlich S, Goerigk L. J. Comput. Chem. 2011; 32: 1456
  • 28 Fukui K. Acc. Chem. Res. 1981; 14: 363
  • 29 Hirata S, Head-Gordon M. Chem. Phys. Lett. 1999; 314: 291
  • 30 Yanai T, Tew DP, Handy NC. Chem. Phys. Lett. 2004; 393: 51
  • 31 Zhurko GA. Chemcraft 1.80 (build 523b) - Graphical Program for Visualization of Quantum Chemistry Computations. http://chemcraftprog.com; accessed Sep 7, 2023
  • 32 Fukaya T, Kodo T, Ishiyama T, Kakuyama H, Nishikawa H, Baba S, Masumoto S. Bioorg. Med. Chem. 2012; 20: 5568