Synthesis 2024; 56(06): 890-905
DOI: 10.1055/a-2066-1659
review
Emerging Trends in Glycoscience

Recent Advances in the Synthesis and Application of C-2-Formyl Glycals

Aditi Arora
a   Bioorganic Laboratory, University of Delhi, 110021 Delhi, India
,
Sumit Kumar
a   Bioorganic Laboratory, University of Delhi, 110021 Delhi, India
b   Visiting Research Scholar, Department of Chemistry and Environmental Science, Medgar Evers College, The City University of New York, Brooklyn, NY 11225, USA
,
Vinod Khatri
c   T. D. L. Govt. College for Women, Murthal-131027, Haryana, India
,
Ashok K. Prasad
a   Bioorganic Laboratory, University of Delhi, 110021 Delhi, India
,
Rajni Johar Chhatwal
d   Maitreyi College, Department of Chemistry, University of Delhi, 110021 Delhi, India
,
Sandeep Kumar
a   Bioorganic Laboratory, University of Delhi, 110021 Delhi, India
e   Acharya Narendra Dev College, Department of Chemistry, University of Delhi, 110019 Delhi, India
› Author Affiliations
We are appreciative to the Institute of Eminence at the University of Delhi for helping to strengthen research and development through financial support. The Council of Scientific and Industrial Research (CSIR), New Delhi, India, has awarded Sumit Kumar and Aditi Arora a Junior Research Fellowship (JRF) and they are grateful to CSIR.


Abstract

C-2-Formyl glycals have sustained interest in carbohydrate chemistry as they afford valuable chiral building blocks for many biological-, pharmaceutical-, and industrial-based important molecules. Basically, C-2-formyl glycals are a class of carbohydrates incorporating an α,β-unsaturated aldehyde. Therefore in many organic reactions, the C-2-formyl glycals can serve as an α,β-unsaturated aldehyde core. In this review, we have compiled a literature survey covering the period 2013–2022, on the synthesis of C-2-formyl glycals and further discuss their importance for the synthesis of many medicinal, supramolecular, biological, organic, and material chemistry based molecules.

1 Introduction

2 Synthesis of C-2-Formyl Glycals

2.1 Vilsmeier–Haack Formylation

2.2 By Consecutive Cyclization

2.3 XtalFluor‑E Based Synthesis

3 Applications of C-2-Formyl Glycals

3.1 C-2-Formyl Glycals as a Synthons

3.2 Anticancer

3.3 Anti-inflammatory

3.4 Antimicrobial

3.5 Glycosidase Inhibitors

3.6 Miscellaneous

4 Conclusion and Future Aspects



Publication History

Received: 21 February 2023

Accepted after revision: 30 March 2023

Accepted Manuscript online:
30 March 2023

Article published online:
02 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Reddy BG, Madhusudanan KP, Vankar YD. J. Org. Chem. 2004; 69: 2630
  • 2 Agarwal A, Rani S, Vankar YD. J. Org. Chem. 2004; 69: 6137
  • 3 Fraser-Reid B, Mclean A, Usherwood EW. J. Am. Chem. Soc. 1969; 91: 5392
  • 4 Fraser-Reid B, Radatus B. J. Am. Chem. Soc. 1970; 92: 5288
  • 5 Fischer E, Zach K. Sitzungsber. K. Preuss. Akad. Wiss. 1913; 27: 311
  • 6 Ramesh NG, Balasubramaniam KK. Eur. J. Org. Chem. 2003; 2003: 4477
  • 7 Ramesh NG. Eur. J. Org. Chem. 2014; 2014: 689
  • 8 Rawal GK, Rani S, Kumari N, Vankar YD. J. Org. Chem. 2009; 74: 5349
  • 9 Reddy YS, Kancharla PK, Roy R, Vankar YD. Org. Biomol. Chem. 2012; 10: 2760
  • 10 Sagar R, Park J, Koh M, Park SB. J. Org. Chem. 2009; 74: 2171
  • 11 Bharate SB, Mahajan TR, Gole YR, Nambiar M, Matan TT, Kulkarni-Almeida A, Balachandran S, Junjappa H, Balakrishnan A, Vishwakarma RA. Bioorg. Med. Chem. 2008; 16: 7167
  • 12 Gupta A, Vankar YD. Tetrahedron 2000; 56: 8525
  • 13 Young IS, Thornton PD, Thompson A. Nat. Prod. Rep. 2010; 27: 1801
  • 14 Cristobal Lopez J, Lameignere E, Burnouf C, de los Angeles Laborde M, Ghini AA, Olesker A, Lukacs G. Tetrahedron 1993; 49: 7701
  • 15 Burnouf C, Lopez JC, de los A Laborde M, Olesker A, Lukacs G. Tetrahedron Lett. 1988; 29: 5533
  • 16 Choe SW. T, Jung ME. Carbohydr. Res. 2000; 329: 731
  • 17 Vilsmeier A, Haack A. Ber. Dtsch. Chem. Ges. B 1927; 60: 119
  • 18 Ramesh NG, Balasubramanian KK. Tetrahedron Lett. 1991; 32: 3875
  • 19 Rajasekaran P, Ande C, Vankar YD. ARKIVOC 2022; (vi): 5
  • 20 Sudharani C, Venukumar P, Sridhar PR. Eur. J. Org. Chem. 2014; 2014: 8085
  • 21 Lee S, Lim D, Lee E, Lee N, Lee H, Cechetto J, Liuzzi M, Frietas-Junior LH, Song JS, Ae Bae M, Oh S, Ayong L, Park SB. J. Med. Chem. 2014; 57: 7425
  • 22 Preindl J, Schulthoff S, Wirtz C, Lingnau J, Fürstner A. Angew. Chem. Int. Ed. 2017; 56: 7525
  • 23 Lin Z.-P, Wong F.-F, Chen Y.-B, Lin C.-H, Hsieh M.-T, Lien J.-C, Chou Y.-H, Lin H.-C. Tetrahedron 2013; 69: 3991
  • 24 Roudias M, Vallée F, Martel J, Paquin JF. J. Org. Chem. 2018; 83: 8731
  • 25 Beaulieu F, Beauregard L.-P, Courchesne G, Couturier M, LaFlamme F, L’Heureux A. Org. Lett. 2009; 11: 5050
  • 26 Pouliot M.-F, Angers L, Hamel J.-D, Paquin J.-F. Org. Biomol. Chem. 2012; 10: 988
  • 27 Yi Y, Gholami H, Morrow MG, Borhan B. Org. Biomol. Chem. 2017; 15: 9570
  • 28 Zhong M, Meng X.-B, Li Z.-J. Carbohydr. Res. 2010; 345: 1099
  • 29 Feit B.-A, Kelson IK, Gerull A, Abramson S, Schmidt RR. J. Carbohydr. Chem. 2000; 19: 661
  • 30 Vankar YD, Linker T. Eur. J. Org. Chem. 2015; 2015: 7633
  • 31 Parasuraman K, Chennaiah A, Dubbu S, Sheriff AK. I, Vankar YD. Carbohydr. Res. 2019; 477: 26
  • 32 Sagar R, Park SB. J. Org. Chem. 2008; 73: 3270
  • 33 Bari A, Feist H, Michalik M, Peseke K. Molecules 2005; 10: 837
  • 34 Schaeffer HJ, Beauchamp L, de Miranda P, Elion GB, Bauer DJ, Collins P. Nature 1978; 272: 583
  • 35 Wellington KW, Benner SA. Nucleosides, Nucleotides Nucleic Acids 2006; 25: 1309
  • 36 Reddy VV, Reddy BV. S. Tetrahedron 2021; 97: 132389
  • 37 Deber CM, Brodsky B, Rath A. Proline Residues in Proteins . In Encyclopedia of Life Sciences (ELS) [Online]. Wiley & Sons; New York: 2010
  • 38 Zarrinpar A, Bhattacharyya RP, Lim WA. Sci. Signaling 2003; 179: re8
  • 39 Verma AK, Dubbu S, Chennaiah A, Vankar YD. Carbohydr. Res. 2019; 475: 48
  • 40 Ansari AA, Vankar YD. J. Org. Chem. 2013; 78: 9383
  • 41 Palanivel AK, Dharuman S, Vankar YD. Tetrahedron: Asymmetry 2016; 27: 1088
  • 42 Galvis CE. P, Kouznetsov VV. Org. Biomol. Chem. 2013; 11: 7372
  • 43 Elnagdi NM. H, Al-Hokbany NS. Molecules 2012; 17: 4300
  • 44 Hickson CL, McNab H. J. Chem. Soc., Perkin Trans. 1 1988; 339
  • 45 Nishiwaki N, Ogihara T, Takami T, Tamura M, Ariga M. J. Org. Chem. 2004; 69: 8382
  • 46 Todoriki R, Ono M, Tamura S. Heterocycles 1986; 24: 755
  • 47 Dukat M, Fiedler W, Dumas D, Damaj I, Martin BR, Rosecrans JA, James JR, Glennon RA. Eur. J. Med. Chem. 1996; 31: 875
  • 48 Lin Z.-P, Lin H.-C, Wu H.-H, Chou H.-W, Lin S.-K, Sung K.-C, Wong F.-F. Tetrahedron Lett. 2009; 50: 5120
  • 49 Doonan CJ, Nielsen DJ, Smith PD, White JM, George GN, Young CG. J. Am. Chem. Soc. 2006; 128: 305
  • 50 Schrock RR, Hoveyda AH. Angew. Chem. Int. Ed. 2003; 42: 4592
  • 51 Pramanik N, Sarkar S, Roy D, Debnath S, Ghosh S, Khamarui S, Maiti DK. RSC Adv. 2015; 5: 101959
  • 52 Yang Y, Yu B. Chem. Rev. 2017; 117: 12281
  • 53 Caneque T, Gomes F, Mai T, Maestri G, Malacria M, Rodriguez R. Nat. Chem. 2015; 7: 744
  • 54 Ghouilem J, Franco R, Retailleau P, Alami M, Gandon V, Messaoudi S. Chem. Commun. 2020; 56: 7175
  • 55 Handbook of Anticancer Drugs from Marine Origin. Kim S.-K. Springer International; Cham: 2015
  • 56 Sunazuka T, Handa M, Nagai K, Shirahta T, Harigaya Y, Otoguro K, Kuwajima I, Omura S. Org. Lett. 2002; 4: 367
  • 57 Kumari P, Gupta S, Narayana C, Ahmad S, Vishnoi N, Singh S, Sagar R. New J. Chem. 2018; 42: 13985
  • 58 Michael JP. Nat. Prod. Rep. 2002; 19: 742
  • 59 Kumari P, Narayana C, Dubey S, Gupta A, Sagar R. Org. Biomol. Chem. 2018; 16: 2049
  • 60 Van Kaer L. Nat. Rev. Immunol. 2005; 5: 31
  • 61 Bendelac A, Savage PB, Teyton L. Annu. Rev. Immunol. 2007; 25: 297
  • 62 Diao H, Kon S, Iwabuchi K, Kimura C, Morimoto J, Ito D, Segawa T, Maeda M, Hamuro J, Nakayama T, Taniguchi M, Yagita H, Van Kaer L, Onóe K, Denhardt D, Rittling S, Uede T. Immunity 2004; 21: 539
  • 63 Nakagawa R, Serizawa I, Motoki K, Sato M, Ueno H, Iijima R, Nakamura H, Shimosaka A, Koezuka Y. Oncol. Res. 2001; 12: 51
  • 64 Jeong YH, Kim Y, Song H, Chung YS, Park SB, Kim HS. PloS One 2014; 9: e87030
  • 65 Del Prado GR. L, Garcia CH, Cea LM, Espinilla VF, Moreno MF. M, Márquez AD, Polo MJ. P, Garcia IA. J. Infect. Dev. Countries 2014; 8: 001
  • 66 Oh S, Park SB. Chem. Commun. 2011; 47: 12754
  • 67 Bari A, Ali SS, Alanazi AM, Mashwani MA, Al-Obaid AM. Front. Chem. 2018; 6: 294
  • 68 Gupta S, Khan J, Kumari P, Narayana C, Ayana R, Chakrabarti M, Sagar R, Singh S. Malar. J. 2019; 18: 346
  • 69 Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond. Stütz A. Wiley-VCH; Weinheim: 1999
  • 70 Boucheron C, Desvergnes V, Compain P, Martin OR, Lavi A, Mackeen M, Wormald M, Dwek R, Butters TD. Tetrahedron: Asymmetry 2005; 16: 1747
  • 71 Lahiri R, Ansari AA, Vankar YD. Chem. Soc. Rev. 2013; 42: 5102
  • 72 Michalik A, Hollinshead J, Jones L, Fleet GW. J, Yu C.-Y, Hu X.-G, Van Well R, Horne G, Wilson FX, Kato A, Jenkinson SF, Nash RJ. Phytochem. Lett. 2010; 3: 136
  • 73 Ramesh NG, Balasubramanian KK. Tetrahedron 1995; 51: 255
  • 74 Hong Z, Liu L, Sugiyama M, Fu Y, Wong C.-H. J. Am. Chem. Soc. 2009; 131: 8352
  • 75 Liu KK. C, Kajimoto T, Chen L, Zhong Z, Ichikawa Y, Wong C.-H. J. Org. Chem. 1991; 56: 6280
  • 76 Badorrey R, Cativiela C, Díaz-de-Villegas MD, Gálvez JA. Tetrahedron 2002; 58: 341
  • 77 Garegg PJ, Samuelsson B. Carbohydr. Res. 1978; 67: 267
  • 78 Kou J.-P, Lu Y.-J, Luo X.-Y, Li J.-Z. Chem. Res. Chin. Univ. 2009; 25: 461
  • 79 Bartlett PA, Ting PC. J. Org. Chem. 1986; 51: 2230
  • 80 Yoshimura J. Adv. Carbohydr. Chem. Biochem. 1984; 42: 69
  • 81 Lee J, Panek JS. Org. Lett. 2009; 11: 4390
  • 82 Tsutsumi R, Kuranaga T, Wright JL. C, Baden DG, Ito E, Satake M, Tachibana K. Tetrahedron 2010; 66: 6775