Synthesis 2022; 54(20): 4503-4508
DOI: 10.1055/a-1863-4082
paper

A Sequential Cycloisomerization/Oxidative Aromatization of 2-Propargyl-cyclohexenones for Direct Access to Substituted Benzofurans

a   Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
,
Ketan Wadekar
a   Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
,
Karna Nair
a   Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
,
Y. Lakshmi Prapurna
a   Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
› Author Affiliations
C.R.R. thanks the Science and Engineering Research Board (SERB), New Delhi (EMR/2016/006253), for funding this project. Y.L.P. thanks the Department of Science and Technology (DST) for a financial grant under the Women Scientists Scheme-A (WOS-A) [Grant No. SR/WOS-A/CS-108/2017 (G)]. K.W. thanks the Council of Scientific and Industrial Research (CSIR), New Delhi and K.N. thanks the Department of Science and Technology (DST), New Delhi for research fellowships (DST-INSPIRE/03/2018/001878).


CSIR-IICT Communication No. IICT/Pubs./2022/084

Abstract

A new approach for the synthesis of benzofurans starting from non-aromatic precursors is reported. The reaction involves sequential DBU-mediated cycloisomerization for furanylation followed by benzene ring construction via oxidative aromatization in the presence of Oxone®. Atom- and pot-economy, simple reaction conditions, the straightforward preparation of starting materials and access to diverse substituted benzofurans are the major advantages of this reaction.

Supporting Information



Publication History

Received: 11 March 2022

Accepted after revision: 27 May 2022

Accepted Manuscript online:
27 May 2022

Article published online:
05 July 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews, see:
    • 1a Proksch P, Rodriguez E. Phytochemistry 1983; 22: 2335
    • 1b Miao Y.-h, Hu Y.-h, Yang J, Liu T, Sun J, Wang X.-j. RSC Adv. 2019; 9: 27510
    • 1c Hiremathad A, Patil MR, Chethana KR, Chand K, Santos MA, Keri RS. RSC Adv. 2015; 5: 96809

      For selected references, see:
    • 2a Banskota AH, Tezuka Y, Midorikawa K, Matsushige K, Kadota S. J. Nat. Prod. 2000; 63: 1277
    • 2b Tanaka H, Oh-Uchi T, Etoh H, Sako M, Sato M, Fukai T, Teteishi Y. Phytochemistry 2003; 63: 597
    • 2c Ali Z, Tanaka T, Iliya I, Iinuma M, Furusawa M, Ito T, Nakaya K.-I, Murata J, Darnaedi D. J. Nat. Prod. 2003; 66: 558
    • 2d Stevenson PC, Simmonds MS. J, Yule MA, Veitch NC, Kite GC, Irwin D, Legg M. Phytochemistry 2003; 63: 41

      For reviews, see:
    • 3a Radadiya A, Shah A. Eur. J. Med. Chem. 2015; 97: 356
    • 3b Khanam H. Shamsuzzaman, Eur. J. Med. Chem. 2015; 97: 483
    • 3c Chand K, Rajeshwari, Hiremathad A, Singh M, Santos MA, Keri RS. Pharmacol. Rep. 2017; 69: 281

      For selected references, see:
    • 4a Tomaszewski Z, Johnson MP, Huang X, Nichols DE. J. Med. Chem. 1992; 35: 2061
    • 4b Sun M, Zhao C, Gfesser GA, Thiffault C, Miller TR, Marsh K, Wetter J, Curtis M, Faghih R, Esbenshade TA, Hancock AA, Cowart M. J. Med. Chem. 2005; 48: 6482
    • 4c Koca M, Servi S, Kirilmis C, Ahmedzade M, Kazaz C, Ozbek B, Ötük G. Eur. J. Med. Chem. 2005; 40: 1351
    • 4d Ono M, Kawashima H, Nonaka A, Kawai T, Haratake M, Mori H, Kung M.-P, Kung HF, Saji H, Nakayama M. J. Med. Chem. 2006; 49: 2725
    • 4e Kumar A, Pintus F, Petrillo AD, Medda R, Caria P, Matos MJ, Viña D, Pieroni E, Delogu F, Era B, Delogu GL, Fais A. Sci. Rep. 2018; 8: 4424
    • 5a Kundu NG, Pal M, Mahanty JS, De M. J. Chem. Soc., Perkin Trans. 1 1997; 2815
    • 5b Heravi MM, Zadsirjan V, Hamidi H, Tabar Amiri PH. RSC Adv. 2017; 7: 24470
    • 5c Deng G, Li M, Yu K, Liu C, Liu Z, Duan S, Chen W, Yang X, Zhang H, Walsh PJ. Angew. Chem. Int. Ed. 2019; 58: 2826
    • 5d Iqbal N, Iqbal N, Maiti D, Cho EJ. Angew. Chem. Int. Ed. 2019; 58: 15808
    • 5e Zhu C.-F, Gao C.-H, Hao W.-J, Zhu Y.-L, Tu S.-J, Wang DC, Jiang B. Org. Chem. Front. 2021; 8: 127
    • 6a Tharra P, Baire B. Chem. Commun. 2016; 52: 14290
    • 6b Yi W, Chen W, Liu F.-X, Zhong Y, Wu D, Zhou Z, Gao H. ACS Catal. 2018; 8: 9508
    • 6c Neog K, Das B, Gogoi P. Org. Biomol. Chem. 2018; 16: 3138
    • 6d Khan F, Fatima M, Shirzaei M, Vo Y, Amarasiri M, Banwell MG, Ma C, Ward JS, Gardiner MG. Org. Lett. 2019; 21: 6342
    • 6e Ni C, Zhao Y, Yang J. ACS Sustainable Chem. Eng. 2020; 8: 12741
  • 7 Liu J.-t, Simmons CJ, Xie H, Yang F, Zhao X.-l, Tang Y, Tang W. Adv. Synth. Catal. 2017; 359: 693
    • 8a Kido F, Noda Y, Maruyama T, Kabuto C, Yoshikoshi A. J. Org. Chem. 1981; 46: 4264
    • 8b Pirrung MC, Lee YR. Tetrahedron Lett. 1994; 35: 6231
    • 8c Paolobelli AB, Ruzziconi R. J. Org. Chem. 1999; 64: 3364
    • 8d Zhang J, Zhang Y, Zhang Y, Herndon JW. Tetrahedron 2003; 59: 5609
    • 8e Grabovyi GA, Bhatti A, Mohr JT. Org. Lett. 2020; 22: 4196

      For representative references, see:
    • 9a Nakatani K, Adachi K, Tanabe K, Saito I. J. Am. Chem. Soc. 1999; 121: 8221
    • 9b Imagawa H, Kurisaki T, Nishizawa M. Org. Lett. 2004; 6: 3679
    • 9c Mann S, Sarli V, Giannis A. Synthesis 2008; 2617
    • 9d Li W, Zhang J. Chem. Commun. 2010; 46: 8839
    • 9e Vicente R, Gonzalez J, Riesgo L, Gonzalez J, Lopez LA. Angew. Chem. Int. Ed. 2012; 51: 8063
    • 9f Gonzalez J, Gonzalez J, Perez-Calleja C, Lopez LA, Vicente R. Angew. Chem. Int. Ed. 2013; 52: 5853
    • 9g Ponra S, Gohain M, van Tonder JH, Bezuidenhoudt BC. B. Synlett 2015; 26: 745
    • 9h Fernandez-Canelas P, Rubio E, Gonzalez JM. Org. Lett. 2019; 21: 6566
    • 9i Wang A, Lu M, Liu Y. Org. Lett. 2021; 23: 6813
    • 9j Hauser N, Imhof MA, Eichenberger SS, Kuendig T, Carreira EM. Angew. Chem. Int. Ed. 2022; 134: e202112838
    • 9k Wan Y, Zhu Y, Peng H, Deng G. J. Org. Chem. 2022; 87: 281
    • 10a Reddy CR, Dilipkumar U, Shravya R. Chem. Commun. 2017; 53: 1904
    • 10b Reddy CR, Ranjan R, Prajapti SK. Org. Lett. 2019; 21: 623
    • 10c Reddy CR, Ajaykumar U, Kolgave DH. J. Org. Chem. 2020; 85: 15521
    • 10d Reddy CR, Srinivasu E, Sathish P, Subbarao M, Reddy DR. J. Org. Chem. 2021; 86: 1118
    • 11a Reddy CR, Vijaykumar J, Grée R. Synthesis 2010; 3715
    • 11b Reddy CR, Krishna G, Kavitha N, Latha B, Shin D.-S. Eur. J. Org. Chem. 2012; 5381
    • 11c Reddy CR, Reddy MD. J. Org. Chem. 2014; 79: 106
    • 11d Reddy CR, Krishna G, Reddy MD. Org. Biomol. Chem. 2014; 12: 1664
    • 11e Reddy CR, Mohammed SZ, Kumaraswamy P. Org. Biomol. Chem. 2015; 13: 8310
    • 11f Reddy CR, Aila M, Subbarao M, Warudikar K, Grée R. Org. Lett. 2021; 23: 4882