Synthesis 2022; 54(18): 4059-4094
DOI: 10.1055/a-1830-3962
paper

Pd(II)-Catalyzed, Picolinamide-Aided γ-(sp2)-C–H Functionalization of Racemic and Enantiopure α-Methylbenzylamine and Phenylglycinol Scaffolds

Narendra Bisht
,
Prabhakar Singh
,
This research was funded by Science and Engineering Research Board (SERB), the Department of Science and Technology (DST), New Delhi, India (Grant No. EMR/2017/002515). N. B. and P. S. thank the Indian Institute of Science Education and Research Mohali (IISER Mohali) for providing PhD fellowships. S. A. B. thanks IISER Mohali for funding the initial part of this research.


Abstract

In this paper, we report the Pd(II)-catalyzed, picolinamide DG-aided sp2 γ-C–H functionalization and expansion of the library of enantiopure α-methylbenzylamine and phenylglycinol scaffolds. We have shown the synthesis of a wide range of racemic and enantiopure ortho-C–H arylated, alkylated, brominated, and iodinated α-methylbenzylamine and phenylglycinol scaffolds. Various racemic and R and S (chiral) sp2 γ-C–H functionalized α-methylbenzylamine and phenylglycinol scaffolds were synthesized with good enantiopurities. Racemic and enantiopure α-methylbenzylamine and phenylglycinol derivatives are important building blocks in organic synthesis and medicinal chemistry. Accordingly, this work contributes to the expansion of the libraries of α-methylbenzylamine and phenylglycinol motifs and substrate scope development through the Pd(II)-catalyzed bidentate directing group picolinamide-aided site-selective C–H activation and functionalization method.

Supporting Information



Publication History

Received: 16 March 2022

Accepted after revision: 20 April 2022

Accepted Manuscript online:
20 April 2022

Article published online:
20 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews on C–H functionalization, see:
    • 1a Zhang Y.-H, Shi G.-F, Yu J.-Q. Carbon–Carbon σ-Bond Formation via C–H Bond Functionalization. In Comprehensive Organic Synthesis II. Knochel P. Elsevier; Amsterdam: 2014: 1101

    • For themed issues on C–H activation, see:
    • 1b Crabtree RH, Lei A. Chem. Rev. 2017; 117: 8481
    • 1c C–H Functionalization in organic synthesis: Davies HM. L, Bois J, Yu J.-Q. Chem. Soc. Rev. 2011; 40: 1855
    • 1d Kakiuchi F, Murai S. Acc. Chem. Res. 2002; 35: 826
    • 1e Hirano K, Miura M. Chem. Lett. 2015; 44: 868
    • 1f Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 1g Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 1h Wang W, Lorion MM, Shah J, Kapdi AR, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 14700

      For selected reviews on C–H functionalization, see:
    • 2a Rej S, Das A, Chatani N. Coord. Chem. Rev. 2021; 431: 213683
    • 2b Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
    • 2c Zhu R.-Y, Farmer ME, Chen Y.-Q, Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 10578
    • 2d Yoshikai N. J. Synth. Org. Chem., Jpn. 2014; 72: 1198
    • 2e Yoshino T, Matsunaga S. Adv. Synth. Catal. 2017; 359: 1245
    • 2f Ni S.-F, Huang G, Chen Y, Wright JS, Li M, Dang L. Coord. Chem. Rev. 2022; 455: 214255
    • 2g Banerjee A, Sarkar S, Patel B. Org. Biomol. Chem. 2017; 15: 505
    • 2h Shao Q, Wu K, Zhuang Z, Qian S, Yu J.-Q. Acc. Chem. Res. 2020; 53: 833
    • 2i Miura M, Satoh T, Hirano K. Bull. Chem. Soc. Jpn. 2014; 87: 751
    • 2j Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 2k Murali K, Machado LA, Carvalho RL, Pedrosa LF, Mukherjee R, Da Silva Júnior EN, Maiti D. Chem. Eur. J. 2021; 27: 12453
    • 2l Uttry A, van Gemmeren M. Synthesis 2020; 52: 479
    • 2m Zu B, Guo Y, Ke J, He C. Synthesis 2021; 53: 2029
    • 2n Higham JI, Bull JA. Org. Biomol. Chem. 2020; 18: 7291
    • 2o Talukdar K, Shah TA, Sarkar T, Roy S, Maharana PK, Punniyamurthy T. Chem. Commun. 2021; 57: 13221
    • 2p Babu SA, Padmavathi R, Suwasia S, Dalal A, Bhattacharya D, Singh P, Tomar R. Stud. Nat. Prod. Chem. 2021; 71: 311

      For selected reviews on C–H functionalization, see:
    • 3a Huang Z, Lim HN, Mo F, Young MC, Dong G. Chem. Soc. Rev. 2015; 44: 7764
    • 3b Rao W.-H, Shi B.-F. Org. Chem. Front. 2016; 3: 1028
    • 3c Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 3d Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem. Eur. J. 2010; 16: 2654
    • 3e Bag S, Maiti D. Synthesis 2016; 48: 804
    • 3f Baudoin O. Acc. Chem. Res. 2017; 50: 1114
    • 3g Yang K, Song M, Liu H, Ge H. Chem. Sci. 2020; 11: 12616
    • 3h Subramanian P, Rudolf GC, Kaliappan KP. Chem. Eur. J. 2016; 11: 168
    • 3i Yorimitsu H, Yoshimura A, Misaki Y. 2020; 52: 3326
    • 3j Manikandan R, Jeganmohan M. Chem. Commun. 2017; 53: 8931
    • 3k Saito H, Yamamoto K, Sumiya Y, Liu L.-J, Nogi K, Maeda S, Yorimitsu H. Chem. Asian J. 2020; 15: 2442
    • 3l He C, Whitehurst WG, Gaunt MJ. Chem 2019; 5: 1031
    • 3m Manoharan R, Jeganmohan M. Asian J. Org. Chem. 2019; 8: 1949
    • 3n Babu SA, Aggarwal Y, Patel P, Tomar R. Chem. Commun. 2022; 58: 2612

      For selected reviews on bidentate directing group (DG)-aided C–H functionalization, see:
    • 4a Daugulis O, Roane J, Tran LD. Acc. Chem. Res. 2015; 48: 1053
    • 4b Rej S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788
    • 4c Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 4d Li H, Li B.-J, Shi Z.-J. Catal. Sci. Technol. 2011; 1: 191
    • 4e Castro LC. M, Chatani N. Chem. Lett. 2015; 44: 410
    • 4f Yadav MR, Rit RK, Majji S, Sahoo AK. Asian J. Org. Chem. 2015; 4: 846
    • 4g Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
    • 4h He G, Wang B, Nack WA, Chen G. Acc. Chem. Res. 2016; 49: 635
    • 4i Noisier AF. M, Brimble MA. Chem. Rev. 2014; 114: 8775
    • 4j Yang X, Shan G, Wang L, Rao Y. Tetrahedron Lett. 2016; 57: 819
    • 4k Rit RK, Yadav MR, Ghosh K, Sahoo AK. Tetrahedron 2015; 71: 4450
    • 4l Liu B, Romine AM, Rubel CZ, Engle KM, Shi B.-F. Chem. Rev. 2021; 121: 14957
    • 4m Brandhofer TG, Mancheño O. Eur. J. Org. Chem. 2018; 6050
    • 4n Jeon J, Lee C, Park I, Hong S. Chem. Rec. 2021; 21: 3613

      For selected papers on directing group (DG)-aided C–H functionalization, see:
    • 5a Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
    • 5b Shabashov D, Daugulis O. J. Am. Chem. Soc. 2010; 132: 3965
    • 5c He G, Chen G. Angew. Chem. Int. Ed. 2011; 50: 5192
    • 5d Hasegawa N, Charra V, Inoue S, Fukumoto Y, Chatani N. J. Am. Chem. Soc. 2011; 133: 8070
    • 5e Wang Z, Kuninobu Y, Kanai M. Org. Lett. 2014; 16: 4790
    • 5f Hoshiya N, Kondo M, Fukuda H, Arisawa M, Uenishi J, Shuto S. J. Org. Chem. 2017; 82: 2535
    • 5g Bay KL, Yang Y.-F, Houk KN. J. Organomet. Chem. 2018; 864: 19

      For selected papers on DG-aided C–H functionalization, see:
    • 6a García-Rubia A, Urones B, Arrayás RG, Carretero JC. Angew. Chem. Int. Ed. 2011; 50: 10927
    • 6b Xu J.-W, Zhang Z.-Z, Rao W.-H, Shi B.-F. J. Am. Chem. Soc. 2016; 138: 10750
    • 6c Zhao F, Jia X, Zhao J, Fei C, Liu L, Liu G, Wang D, Chen F. RSC Adv. 2017; 7: 25031
    • 6d Zeng W, Nukeyeva M, Wang Q, Jiang C. Org. Biomol. Chem. 2018; 16: 598
    • 6e Chan W.-W, Lo S.-F, Zhou Z, Yu W.-Y. J. Am. Chem. Soc. 2012; 134: 13565
    • 6f Lin L, Fukagawa S, Sekine D, Tomita E, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2018; 57: 12048
    • 6g Song J, Chen W, Zhao Y, Li C, Liang G, Huang L. RSC Adv. 2016; 6: 54984

      For selected papers on DG-aided C–H functionalization, see:
    • 7a Wasa M, Chan KS. L, Zhang X.-G, He J, Miura M, Yu J.-Q. J. Am. Chem. Soc. 2012; 134: 18570
    • 7b He J, Wasa M, Chan KS. L, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 3387
    • 7c Gong W, Zhang G, Liu T, Giri R, Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 16940

      For selected papers from our group on DG-aided C–H functionalization, see:
    • 8a Parella R, Babu SA. J. Org. Chem. 2017; 82: 7123
    • 8b Bisht N, Babu SA, Tomar R. Asian J. Org. Chem. 2020; 9: 1225
    • 8c Padmavathi R, Babu SA. Asian J. Org. Chem. 2019; 8: 899
    • 8d Naveen, Rajkumar V, Babu SA, Gopalakrishnan B. J. Org. Chem. 2016; 81: 12197
    • 8e Rajkumar V, Naveen, Babu SA. ChemistrySelect 2016; 1: 1207
    • 8f Dalal A, Babu SA. Synthesis 2021; 53: 3307
    • 8g Banga S, Kaur R, Babu SA. Eur. J. Org. Chem. 2021; 3641
    • 8h Parella R, Babu SA. J. Org. Chem. 2017; 82: 6550
    • 8i Reddy C, Bisht N, Parella R, Babu SA. J. Org. Chem. 2016; 81: 12143
    • 8j Gopalakrishnan B, Mohan S, Parella R, Babu SA. J. Org. Chem. 2016; 81: 8988
    • 8k Parella R, Babu SA. J. Org. Chem. 2015; 80: 12379
    • 8l Parella R, Babu SA. J. Org. Chem. 2015; 80: 2339
    • 8m Parella R, Gopalakrishnan B, Babu SA. Org. Lett. 2013; 15: 3228
    • 8n Singh P, Dalal A, Babu SA. Asian J. Org. Chem. 2019; 8: 877
    • 8o Padmavathi R, Sankar R, Gopalakrishnan B, Parella R, Babu SA. Eur. J. Org. Chem. 2015; 3727

      Available examples of C–H functionalization of racemic α-methylbenzylamine, see:
    • 9a Shang R, Ilies L, Nakamura E. J. Am. Chem. Soc. 2015; 137: 7660
    • 9b Shen Z, Cera G, Haven T, Ackermann L. Org. Lett. 2017; 19: 3795
    • 9c Tran LD, Popov I, Daugulis O. J. Am. Chem. Soc. 2012; 134: 18237
    • 9d Lan J, Xie H, Lu X, Deng Y, Jiang H, Zeng W. Org. Lett. 2017; 19: 4279
    • 9e Nadres ET, Santos GI. F, Shabashov D, Daugulis O. J. Org. Chem. 2013; 78: 9689
    • 9f Chen C, Guan M, Zhang J, Wen Z, Zhao Y. Org. Lett. 2015; 17: 3646
    • 9g Chen C, Wang C, Zhang J, Zhao Y. J. Org. Chem. 2015; 80: 942
    • 9h Grigorjeva L, Daugulis O. Angew. Chem. Int. Ed. 2014; 53: 10209
    • 9i Han J, Wang N, Huang Z.-B, Zhao Y, Shi D.-Q. J. Org. Chem. 2017; 82: 6831
    • 9j Bolsakova J, Lukasevics L, Grigorjeva L. J. Org. Chem. 2020; 85: 4482
    • 9k Kuai C, Wang L, Li B, Yang Z, Cui X. Org. Lett. 2017; 19: 2102

      Available examples of C–H functionalization of racemic phenylglycinol, see refs. 9f, 9g, 9i, 9j and:
    • 10a Cheng X.-F, Wang T, Li Y, Wu Y, Sheng J, Wang R, Li C, Bian K.-J, Wang X.-S. Org. Lett. 2018; 20: 6530
    • 10b Lukasevics L, Cizikovs A, Grigorjeva L. Org. Lett. 2020; 22: 2720

      Available examples of C–H functionalization of enantiopure α-methylbenzylamine, see:
    • 11a Landge VG, Midya SP, Rana J, Shinde DR, Balaraman E. Org. Lett. 2016; 18: 5252
    • 11b Zhao Y, Chen G. Org. Lett. 2011; 13: 4850
    • 11c Karmakar U, Samanta R. J. Org. Chem. 2019; 84: 2850
    • 11d Ref. 9a
    • 11e Ling F, Ai C, Lv Y, Zhong W. Adv. Synth. Catal. 2017; 359: 3707
    • 11f Martínez ÁM, Rodríguez N, Gómez-Arrayás R, Carretero JC. Chem. Eur. J. 2017; 23: 11669
  • 12 Available examples of C–H functionalization of enantiopure phenylglycinol, see refs. 9j, 10c and: Singh P, Babu SA, Aggarwal Y, Patel P. Asian J. Org. Chem. 2021; 10: 180

    • Selected reviews/papers on applications of α-methylbenzylamines:
    • 13a Juaristi E, León-Romo J.-L, Reyes A, Escalante J. Tetrahedron: Asymmetry 1999; 10: 2441
    • 13b Juaristi E, Escalante J, León-Romo J.-L, Reyes A. Tetrahedron: Asymmetry 1998; 9: 715
    • 13c Wosińska-Hrydczuk M, Skarżewski J. Molecules 2020; 25: 4907
    • 13d Bandala Y, Juaristi E. Aldrichimica Acta 2010; 43: 65
    • 13e Federsel H.-J, Hedberg M, Qvarnström FR, Sjögren MP. T, Tian W. Acc. Chem. Res. 2007; 40: 1377
    • 13f Rezaei H, Marek I, Normant JF. Tetrahedron 2001; 57: 2477
    • 13g Ziólkowski M, Czarnocki Z, Leniewski A, Maurin JK. Tetrahedron: Asymmetry 1999; 10: 3371
    • 13h Caretti I, Carter E, Fallis IA, Murphy DM, Doorslaer SV. Phys. Chem. Chem. Phys. 2011; 13: 20427
    • 13i Cassimjee KE, Humble MS, Land H, Abedi V, Berglund P. Org. Biomol. Chem. 2012; 10: 5466
    • 13j Lygo B, Butt U, Cormack M. Org. Biomol. Chem. 2012; 10: 4968
    • 13k Guzmán-Mejía, Reyes-Rangel G, Juraisti E. Nat. Protoc. 2007; 2: 2759
    • 13l Fernandes C, Pereira E, Faure S, Aitken DJ. J. Org. Chem. 2009; 74: 3217
    • 13m Fadel A, Lahrache N. J. Org. Chem. 2007; 72: 1780
    • 13n León A, Cogordán JA, Sterner O, Delgado G. J. Nat. Prod. 2012; 75: 859
    • 13o Rossi P, Ceccarelli J, Milazzo S, Paoli P, Missina JM, Ciattini S, Ienco A, Tuci G, Valleri M, Giovannoni MP, Guerrini G, Conti L. Cryst. Growth Des. 2021; 21: 6947

      Selected reports on bio-active benzylamines:
    • 14a Kelly MG, Xu S, Xi N, Miller P, Kincaid JF, Ghiron C, Coulter T. WO 2003099776 A1, 2003
    • 14b Meng X, Cai Z, Zhou W, Hao Q, Zhang W, Chen X, Huang H. CN 104610262 A, 2015
    • 14c Berger ML, Schweifer A, Rebernik P, Hammerschmidt F. Bioorg. Med. Chem. 2009; 17: 3456
    • 14d Dijcks FA, Grove SJ. A, Carlyle IC, Thorn SN, Rae DR, Ruigt GS. F, Leysen D. WO 9918941 A2, 1999

      Selected papers on application and bio-active phenylglycinols:
    • 15a Klimkowski VJ, Watson BM, Wiley MR, Liebeschuetz J, Franciskovich JB, Marimuthu J, Bastian JA, Sall DJ, Smallwood JK, Chirgadze NY, Smith GF, Foster RS, Craft T, Sipes P, Chastain M, Sheehan SM. Bioorg. Med. Chem. 2007; 17: 5801
    • 15b Owens AP, Harrison T, Moseley JD, Swain CJ, Sadowski S, Cascieri MA. Bioorg. Med. Chem. 1998; 8: 51
    • 15c Owens AP, Williams BJ, Harrison T, Swain CJ, Baker R, Sadowski S, Cascieri MA. Bioorg. Med. Chem. 1995; 5: 2761
    • 15d Dzierba CD, Bi Y, Dasgupta B, Hartz RA, Ahuja V, Cianchetta G, Kumi G, Dong L, Aleem S, Fink C, Garcia Y, Green M, Han J, Kwon S, Qiao Y, Wang J, Zhang Y, Liu Y, Zipp G, Liang Z, Burford N, Feerante M, Bertekap R, Lewis M, Cacace A, Grace J, Wilson A, Nouraldeen A, Westphal R, Kimball D, Carson K, Bronson JJ, Macor JE. Bioorg. Med. Chem. 2015; 25: 1448
    • 15e Ye N, Li B, Mao Q, Wold EA, Tian S, Allen JA, Zhou J. ACS Chem. Neurosci. 2019; 10: 190
    • 15f Gavai AV, Sher PM, Mikkilineni AB, Poss KM, McCann PJ, Girotra RN, Fisher LG, Wu G, Bednarz MS, Mathur A, Wang TC, Sun CQ, Slusarchyk DA, Skwish S, Allen GT, Hillyer DE, Frohlich BH, Abboa-Offei BE, Cap M, Waldron TL, George RJ, Tesfamariam B, Harper TW, Ciosek CP. Jr, Young DA, Dickinson KE, Seymour AA, Arbeeny CM, Washburn WN. Bioorg. Med. Chem. 2001; 11: 3041
    • 15g Ma D, Wang G, Wang S, Kozikowski AP, Lewin NE, Blumberg PM. Bioorg. Med. Chem. 1999; 9: 1371
    • 15h Peng Y.-H, Shiao H.-Y, Tu C.-H, Liu P.-M, Hsu JT.-A, Amancha PK, Wu J.-S, Coumar MS, Chen C.-H, Wang S.-Y, Lin W.-H, Sun H.-Y, Chao Y.-S, Lyu P.-C, Hsieh H.-P, Wu S.-Y. J. Med. Chem. 2013; 56: 3889
    • 15i Bi Y, Dzierba CD, Bronson JJ, Carson K, Cianchetta G, Dong L, Fink C, Green M, Kimball D, Macor JE, Kwon S, Wang J, Zhang Y, Zipp G. WO 2011044195 A1, 14.04.2011
  • 16 CCDC 2036403 (8h-(RS)) and 2156612 (12e-(RS)) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 17 Shimamura S, Nakamura K. WO 2016121959 A1, 04.08.2016
  • 18 While a single signal is expected, there seems to be the existence of rotamers; thus, more than one signal is observed. For a related paper dealing with rotamers with aryl compounds containing F, see: Sun M, Chen W, Zhang T, Liu Z, Wei J, Xi N. Tetrahedron 2020; 76: 131679