Synthesis
DOI: 10.1055/s-0039-1690720
short review
© Georg Thieme Verlag Stuttgart · New York

Direct C(sp3)–H Activation of Carboxylic Acids

Alexander Uttry
a  Westfälische Wilhelms-Universität-Münster, Corrensstr. 40, 48149 Münster, Germany   Email: mvangemmeren@uni-muenster.de
,
a  Westfälische Wilhelms-Universität-Münster, Corrensstr. 40, 48149 Münster, Germany   Email: mvangemmeren@uni-muenster.de
b  Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34–36, 45470 Mülheim an der Ruhr, Germany   Email: mvangemmeren@uni-muenster.de
› Author Affiliations
We thank the Max Planck Society (Otto Hahn Award to M.v.G.), the Fonds der Chemischen Industrie (Liebig Fellowship to M.v.G.), the Westfälische Wilhelms-Universität-Münster (WWU Münster) and the Deutsche Forschungsgemeinschaft (SFB858) for financial support.
Further Information

Publication History

Received: 27 August 2019

Accepted after revision: 30 September 2019

Publication Date:
17 October 2019 (eFirst)

Published as part of the Bürgenstock Special Section 2019Future Stars in Organic Chemistry

Abstract

Carboxylic acids are important in a variety of research fields and applications. As a result, substantial efforts have been directed towards the C–H functionalization of such compounds. While the use of the carboxylic acid moiety as a native directing group for C(sp2)–H functionalization reactions is well established, as yet there is no general solution for the C(sp3)–H activation of aliphatic carboxylic acids and most endeavors have instead relied on the introduction of stronger directing groups. Recently however, novel ligands, tools, and strategies have emerged, which enable the use of free aliphatic carboxylic acids in C–H-activation-based transformations.

1 Introduction

2 Challenges in the C(sp3)–H Bond Activation of Carboxylic Acids

3 The Lactonization of Aliphatic Carboxylic Acids

4 The Directing Group Approach

5 The Direct C–H Arylation of Aliphatic Carboxylic Acids

6 The Direct C–H Olefination of Aliphatic Carboxylic Acids

7 The Direct C–H Acetoxylation of Aliphatic Carboxylic Acids

8 Summary

 
  • References

  • 1 Carbonsäuren und Carbonsäure-Derivate . In Methoden der Organischen Chemie (Houben-Weyl), Vol. E 5. Büchel KH, Falbe J, Hagemann H, Hanack M, Klamann D, Kreher R, Kropf H, Regitz M. Thieme; Stuttgart: 1985
    • 2a Gooßen LJ, Rodríguez N, Gooßen K. Angew. Chem. Int. Ed. 2008; 47: 3100
    • 2b Cornella J, Larrosa I. Synthesis 2012; 44: 653
    • 2c Font M, Quibell JM, Perry GJ. P, Larrosa I. Chem. Commun. 2017; 53: 5584
    • 3a Huang H, Jia K, Chen Y. ACS Catal. 2016; 6: 4983
    • 3b Jin Y, Fu H. Asian J. Org. Chem. 2017; 6: 368
    • 3c Murarka S. Adv. Synth. Catal. 2018; 360: 1735
    • 3d Schwarz J, König B. Green Chem. 2018; 20: 323

      For selected reviews on C–H activation, see:
    • 4a Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 4b Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem. Eur. J. 2010; 16: 2654
    • 4c Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 4d Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 4e Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
    • 4f Hartwig JF. J. Am. Chem. Soc. 2016; 138: 2
    • 4g Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 4h He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 4i Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
  • 5 McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 6a Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 6b Pichette Drapeau M, Gooßen LJ. Chem. Eur. J. 2016; 22: 18654
  • 7 Arndtsen BA, Bergman RG, Mobley TA, Peterson TH. Acc. Chem. Res. 1995; 28: 154
  • 8 Whisler MC, MacNeil S, Snieckus V, Beak P. Angew. Chem. Int. Ed. 2004; 43: 2206
  • 9 Uttry A, van Gemmeren M. Synlett 2018; 29: 1937

    • Monomeric palladium carboxylates exist in complex equilibria with dimeric and trimeric species in solution, which depends on various parameters. The problems associated with the desired C–H activation processes of carboxylic acids are discussed on the monomeric complexes for simplicity. For representative publications dealing with this matter, see:
    • 10a Bianchini C, Meli A, Oberhauser W. Organometallics 2003; 22: 4281
    • 10b Bakhmutov VI, Berry JF, Cotton FA, Ibragimov S, Murillo CA. Dalton Trans. 2005; 1989
    • 11a Stephenson TA, Morehouse SM, Powell AR, Heffer JP, Wilkinson G. J. Chem. Soc. 1965; 3632
    • 11b Hermans S, Wenkin M, Devillers M. J. Mol. Catal. A: Chem. 1998; 136: 59
  • 12 Kao L.-C, Sen A. J. Chem. Soc., Chem. Commun. 1991; 1242
  • 13 Dangel BD, Johnson JA, Sames D. J. Am. Chem. Soc. 2001; 123: 8149
  • 14 Janssen M, de Vos DE. Chem. Eur. J. 2019; 25: 10724
  • 15 Lee JM, Chang S. Tetrahedron Lett. 2006; 47: 1375
  • 16 Novák P, Correa A, Gallardo-Donaire J, Martin R. Angew. Chem. Int. Ed. 2011; 123: 12444
  • 17 Basolo F, Gray HB, Pearson RG. J. Am. Chem. Soc. 1960; 82: 4200

    • For selected reviews dealing with carboxylic acid derivatives as directing groups in C–H activation processes, see:
    • 18a Zhu R.-Y, Farmer ME, Chen Y.-Q, Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 10578
    • 18b Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
  • 19 Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154

    • For examples using the 8-quinolinyl (Q) directing group for example, see:
    • 20a Ano Y, Tobisu M, Chatani N. J. Am. Chem. Soc. 2011; 133: 12984
    • 20b Ano Y, Tobisu M, Chatani N. Org. Lett. 2012; 14: 354
    • 20c Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
  • 21 For the removal of the 8-quinolinyl directing group, see for example: Zhang Z, Li X, Song M, Wan Y, Zheng D, Zhang G, Chen G. J. Org. Chem. 2019; 84 DOI: in press; 10.1021/acs.joc.9b01362; and references therein.
    • 22a Park H, Li Y, Yu J.-Q. Angew. Chem. Int. Ed. 2019; 131: 11546
    • 22b Park H, Chekshin N, Shen P.-X, Yu J.-Q. ACS Catal. 2018; 8: 9292

      For selected reviews, see:
    • 23a Rousseau G, Breit B. Angew. Chem. Int. Ed. 2011; 50: 2450
    • 23b Zhang F.-L, Hong K, Li T.-J, Park H, Yu J.-Q. Science 2016; 351: 252
    • 23c Zhao Q, Poisson T, Pannecoucke X, Besset T. Synthesis 2017; 49: 4808
    • 23d Gandeepan P, Ackermann L. Chem 2018; 4: 199
  • 24 Giri R, Maugel N, Li J.-J, Wang D.-H, Breazzano SP, Saunders LB, Yu J.-Q. J. Am. Chem. Soc. 2007; 129: 3510
  • 25 Feng W, Wang T, Liu D, Wang X, Dang Y. ACS Catal. 2019; 9: 6672
    • 26a Beesley RM, Ingold CK, Thorpe JF. J. Chem. Soc. 1915; 107: 1080
    • 26b Jung ME, Piizzi G. Chem. Rev. 2005; 105: 1735
  • 27 He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
  • 28 Chen G, Zhuang Z, Li G.-C, Saint-Denis TG, Hsiao Y, Joe CL, Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 1506
    • 29a Berkessel A, Adrio JA, Hüttenhain D, Neudörfl JM. J. Am. Chem. Soc. 2006; 128: 8421
    • 29b Wencel-Delord J, Colobert F. Org. Chem. Front. 2016; 3: 394
  • 30 Amatore C, Pfluger F. Organometallics 1990; 9: 2276
  • 31 Zhu Y, Chen X, Yuan C, Li G, Zhang J, Zhao Y. Nat. Commun. 2017; 8: 14904
  • 32 Engle KM. Pure Appl. Chem. 2016; 88: 119
  • 33 Ghosh KK, van Gemmeren M. Chem. Eur. J. 2017; 23: 17697
  • 34 Dolui P, Das J, Chandrashekar HB, Anjana SS, Maiti D. Angew. Chem. Int. Ed. 2019; 58: 13773
  • 35 Shen P.-X, Hu L, Shao Q, Hong K, Yu J.-Q. J. Am. Chem. Soc. 2018; 140: 6545
  • 36 Saint-Denis TG, Zhu R.-Y, Chen G, Wu Q.-F, Yu J.-Q. Science 2018; 359: eaao4798
  • 37 Hu L, Shen P.-X, Shao Q, Hong K, Qiao JX, Yu J.-Q. Angew. Chem. Int. Ed. 2019; 58: 2134
  • 38 Roman DS, Charette AB. Org. Lett. 2013; 15: 4394
  • 39 Zhuang Z, Yu C.-B, Chen G, Wu Q.-F, Hsiao Y, Joe CL, Qiao JX, Poss MA, Yu J.-Q. J. Am. Chem. Soc. 2018; 140: 10363
  • 40 Ghosh KK, Uttry A, Koldemir A, Ong M, van Gemmeren M. Org. Lett. 2019; 21: 7154