Synthesis 2022; 54(02): 506-516
DOI: 10.1055/a-1643-7642
paper

Hidden Reactivity of Barbituric and Meldrum’s Acids: Atom-Efficient Free-Radical C–O Coupling with N-Hydroxy Compounds

Igor B. Krylov
,
Stanislav A. Paveliev
,
Alexander S. Budnikov
,
Oleg O. Segida
,
Valentina M. Merkulova
,
Vera A. Vil’
,
Gennady I. Nikishin
,
Alexander O. Terent’ev
This work was supported by the Russian Foundation for Basic Research (20-33-70109).


Abstract

The reactivity of CH-acidic and structurally related enol-containing heterocycles towards N-oxyl radicals is disclosed. Traditionally, these substrates have been considered as reactants for ionic transformations. Highly selective and efficient N-oxyl radical mediated C–O coupling of substituted barbituric or Meldrum’s acids with N-hydroxy compounds (N-hydroxyimides, hydroxamic acids, oximes, and N-hydroxybenzotriazole) was achieved using inexpensive manganese-containing salts as oxidants. Metal-free C–O coupling was demonstrated using diacetyliminoxyl as both the oxidant (hydrogen-atom acceptor) and the coupling partner.

Supporting Information



Publication History

Received: 26 July 2021

Accepted after revision: 13 September 2021

Accepted Manuscript online:
13 September 2021

Article published online:
19 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Scheuermann CJ. Chem. Asian J. 2010; 5: 436
    • 1b Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 1c Bosque I, Chinchilla R, Gonzalez-Gomez JC, Guijarro D, Alonso F. Org. Chem. Front. 2020; 7: 1717
    • 1d Faisca Phillips AM, Pombeiro AJ. L. ChemCatChem 2018; 10: 3354
    • 1e Faisca Phillips AM. C, Guedes da Silva M. dF, Pombeiro AJ. L. Catalysts 2020; 10: 529
    • 1f Lei A, Shi W, Liu C, Liu W, Zhang H, He C. Oxidative Cross-Coupling Reactions . Wiley-VCH; Weinheim: 2016: 229
    • 2a Pralay D, Dharminder S, Manish K, Bikram S. Curr. Org. Chem. 2010; 14: 754
    • 2b Zhu L, Li J, Yang J, Au-Yeung HY. Chem. Sci. 2020; 11: 13008
    • 3a Krylov IB, Paveliev SA, Budnikov AS, Terent’ev AO. Beilstein J. Org. Chem. 2020; 16: 1234
    • 3b Tretyakov EV, Ovcharenko VI, Terent’ev AO, Krylov IB, Magdesieva TV, Mazhukin DG, Gritsan NP. Russ. Chem. Rev. 2021; 90
    • 4a Sabir S, Kumar G, Jat JL. Org. Biomol. Chem. 2018; 16: 3314
    • 4b Ashani Y, Silman I. Hydroxylamines and Oximes: Biological Properties and Potential Uses as Therapeutic Agents. In PATAI’S Chemistry of Functional Groups. Wiley; Weinheim: 2010
  • 5 Krylov IB, Terent’ev AO, Timofeev VP, Shelimov BN, Novikov RA, Merkulova VM, Nikishin GI. Adv. Synth. Catal. 2014; 356: 2266
  • 6 Krylov IB, Paveliev SA, Syroeshkin MA, Korlyukov AA, Dorovatovskii PV, Zubavichus YV, Nikishin GI, Terent’ev AO. Beilstein J. Org. Chem. 2018; 14: 2146
  • 7 Krylov IB, Lopat’eva ER, Budnikov AS, Nikishin GI, Terent’ev AO. J. Org. Chem. 2020; 85: 1935
  • 8 Guo Z, Jin C, Zhou J, Su W. RSC Adv. 2016; 6: 79016
  • 9 Lv Y, Sun K, Wang T, Li G, Pu W, Chai N, Shen H, Wu Y. RSC Adv. 2015; 5: 72142
    • 10a Jiang H, Tang X, Liu S, Wang L, Shen H, Yang J, Wang H, Gui Q.-W. Org. Biomol. Chem. 2019; 17: 10223
    • 10b Dian L, Wang S, Zhang-Negrerie D, Du Y. Adv. Synth. Catal. 2015; 357: 3839
    • 11a Krylov IB, Paveliev SA, Shumakova NS, Syroeshkin MA, Shelimov BN, Nikishin GI, Terent’ev AO. RSC Adv. 2018; 8: 5670
    • 11b Chen R, Liu B, Li W, Wang K.-K, Miao C, Li Z, Lv Y, Liu L. RSC Adv. 2021; 11: 8051
  • 12 Xu X, Sun J, Lin Y, Cheng J, Li P, Yan Y, Shuai Q, Xie Y. Org. Biomol. Chem. 2017; 15: 9875
  • 13 Krylov IB, Paveliev SA, Shelimov BN, Lokshin BV, Garbuzova IA, Tafeenko VA, Chernyshev VV, Budnikov AS, Nikishin GI, Terent’ev AO. Org. Chem. Front. 2017; 4: 1947
    • 14a Mohammadi Ziarani G, Aleali F, Lashgari N. RSC Adv. 2016; 6: 50895
    • 14b Kobra N, Zahra K. Mini-Rev. Org. Chem. 2017; 14: 143
    • 14c Pair E, Cadart T, Levacher V, Brière J.-F. ChemCatChem 2016; 8: 1882
    • 14d Ivanov AS. Chem. Soc. Rev. 2008; 37: 789
    • 14e Kobra N, Yeganeh S. Curr. Org. Chem. 2017; 21: 1098
    • 14f Ankita C, Pooja S, Jitender MK. Curr. Green Chem. 2016; 3: 328
    • 14g Janikowska K, Rachoń J, Makowiec S. Russ. Chem. Rev. 2014; 83: 620
    • 14h Brosge F, Singh P, Almqvist F, Bolm C. Org. Biomol. Chem. 2021; 19: 5014
    • 15a Nusrat S, Uzma A, Gul Z, Shagufta P, Irum J, Aisha A. Curr. Org. Chem. 2020; 24: 129
    • 15b Shukla S, Bishnoi A, Devi P, Kumar S, Srivastava A, Srivastava K, Fatma S. Russ. J. Org. Chem. 2019; 55: 860
  • 16 Mahmudov KT, Kopylovich MN, Maharramov AM, Kurbanova MM, Gurbanov AV, Pombeiro AJ. L. Coord. Chem. Rev. 2014; 265: 1
  • 17 Toscano JP, Saghar N, Guthrie DA. O-Substituted Hydroxamic Acids 2018
  • 18 Zemtsov AA, Levin VV, Dilman AD, Struchkova MI, Belyakov PA, Tartakovsky VA. Tetrahedron Lett. 2009; 50: 2998
  • 19 Lipson VV, Gorobets NY. Mol. Diversity 2009; 13: 399
    • 20a Terent’ev AO, Vil’ VA, Gorlov ES, Rusina ON, Korlyukov AA, Nikishin GI, Adam W. ChemistrySelect 2017; 2: 3334
    • 20b Chaudhari MB, Moorthy S, Patil S, Bisht GS, Mohamed H, Basu S, Gnanaprakasam B. J. Org. Chem. 2018; 83: 1358
    • 20c Bityukov OV, Vil’ VA, Sazonov GK, Kirillov AS, Lukashin NV, Nikishin GI, Terent’ev AO. Tetrahedron Lett. 2019; 60: 920
    • 21a Elinson MN, Vereshchagin AN, Stepanov NO, Belyakov PA, Nikishin GI. Tetrahedron Lett. 2010; 51: 6598
    • 21b Giarrusso J, Do DT, Johnson JS. Org. Lett. 2017; 19: 3107
    • 22a Cadet J, Teoule R. Biochim. Biophys. Acta, Nucleic Acids Protein Synth. 1971; 238: 8
    • 22b Rahman MT, Nishino H. Org. Lett. 2003; 5: 2887
    • 22c Krabbe SW, Do DT, Johnson JS. Org. Lett. 2012; 14: 5932
  • 23 Siddaraju Y, Prabhu KR. Org. Biomol. Chem. 2015; 13: 11651
    • 24a Brokenshire JL, Mendenhall GD, Ingold KU. J. Am. Chem. Soc. 1971; 93: 5278
    • 24b Mendenhall GD, Ingold KU. J. Am. Chem. Soc. 1973; 95: 2963
  • 25 Xue X.-S, Ji P, Zhou B, Cheng J.-P. Chem. Rev. 2017; 117: 8622
    • 26a Montgomery JA. Jr, Frisch MJ, Ochterski JW, Petersson GA. J. Chem. Phys. 2000; 112: 6532
    • 26b Montgomery JA. Jr, Frisch MJ, Ochterski JW, Petersson GA. J. Chem. Phys. 1999; 110: 2822
    • 27a Griesser M, Chauvin J.-PR, Pratt DA. Chem. Sci. 2018; 9: 7218
    • 27b Xiu-Juan Q, Yong F, Lei L, Qing-Xiang G. Chin. J. Chem. 2005; 23: 194
    • 27c Pratt DA, Blake JA, Mulder P, Walton JC, Korth H.-G, Ingold KU. J. Am. Chem. Soc. 2004; 126: 10667
    • 27d Mulder P, Korth H.-G, Pratt DA, DiLabio GA, Valgimigli L, Pedulli GF, Ingold KU. J. Phys. Chem. A 2005; 109: 2647
  • 28 Simmie JM, Somers KP. J. Phys. Chem. A 2015; 119: 7235
  • 29 Marenich AV, Cramer CJ, Truhlar DG. J. Phys. Chem. B 2009; 113: 6378
  • 30 DiLabio GA, Franchi P, Lanzalunga O, Lapi A, Lucarini F, Lucarini M, Mazzonna M, Prasad VK, Ticconi B. J. Org. Chem. 2017; 82: 6133
  • 31 Chen K, Mao J, Shen S, Fei L, Xie H, Jiang K. Chem. Phys. Lett. 2017; 684: 225
  • 32 Terent’ev AO, Krylov IB, Sharipov MY, Kazanskaya ZM, Nikishin GI. Tetrahedron 2012; 68: 10263
  • 33 da Silva G, Bozzelli JW. J. Phys. Chem. C 2007; 111: 5760
  • 34 Amorati R, Lucarini M, Mugnaini V, Pedulli GF, Minisci F, Recupero F, Fontana F, Astolfi P, Greci L. J. Org. Chem. 2003; 68: 1747
  • 35 Krasnov KA, Kartsev VG, Gorovoi AS. Chem. Nat. Compd. 2000; 36: 192
  • 36 Desai UV, Pore DM, Mane RB, Solabannavar SB, Wadgaonkar PP. Synth. Commun. 2004; 34: 25
  • 37 Li Y, Zhang J, Li D, Chen Y. Org. Lett. 2018; 20: 3296
  • 38 Matsumoto Y, Kuriyama M, Yamamoto K, Nishida K, Onomura O. Org. Process Res. Dev. 2018; 22: 1312
    • 39a Hojczyk KN, Feng P, Zhan C, Ngai M.-Y. Angew. Chem. Int. Ed. 2014; 53: 14559
    • 39b Przychodzeń W. Eur. J. Org. Chem. 2005; 2002
    • 39c Nakamura I, Owada M, Jo T, Terada M. Org. Lett. 2017; 19: 2194
  • 40 Eisenhauer BM, Wang M, Labaziewicz H, Ngo M, Mendenhall GD. J. Org. Chem. 1997; 62: 2050
  • 41 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Rev. A.03. Gaussian, Inc; Wallingford: 2016
    • 42a An Open-Source Molecular Builder and Visualization Tool, Version 1.2.0. Avogadro Chemistry; 2016
    • 42b Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. J. Cheminf. 2012; 4: 17