Synthesis 2021; 53(23): 4353-4374
DOI: 10.1055/a-1543-3743
short review

Recent Advances in the Transition-Metal-Free Arylation of Hetero­arenes

Sefa Uçar
,
Arif Daştan
This study was funded by Türkiye Bilimsel ve Teknolojik Araştirma Kurumu (The Scientific and Technological Research Council of Turkey, TUBITAK; project no. 216Z168). We would like to thank TUBITAK for its support.


Abstract

Transition-metal-free arylation reactions have attracted considerable attention for economic and environmental reasons over the past 40 years. In recent years, much effort has been made to develop efficient transition-metal-free approaches for the arylation of heteroarenes. Covering the literature from 2015 to early 2021, this review aims to provide a thorough overview of the synthetic and mechanistic aspects of these atom-economical and environmentally benign reactions.

1 Introduction

2 Arylation of Pre-functionalized Heteroarenes

2.1 Arylation of Heteroaryl Halides

2.2 Decarboxylative Arylation of Heteroarenes

3 Direct C–H Arylation of Heteroarenes

3.1 C(sp2)–H Arylation

3.2 C(sp3)–H Arylation

4 N-Arylation of Heteroarenes

5 Summary and Outlook



Publication History

Received: 03 April 2021

Accepted after revision: 02 July 2021

Accepted Manuscript online:
02 July 2021

Article published online:
20 August 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Yoon J.-Y, Lee S.-g, Shin H. Curr. Org. Chem. 2011; 15: 657
    • 1b El-Seedi HR. J. Nat. Prod. 2007; 70: 118
    • 1c Narváez-Mastache JM, Novillo F, Delgado G. Phytochemistry 2008; 69: 451
    • 1d Fürstner A. Angew. Chem. Int. Ed. 2003; 42: 3582
    • 2a Weïwer M, Spoonamore J, Wei J, Guichard B, Ross NT, Masson K, Silkworth W, Dandapani S, Palmer M, Scherer CA. ACS Med. Chem. Lett. 2012; 3: 1034
    • 2b Hu W, Guo Z, Chu F, Bai A, Yi X, Cheng G, Li J. Bioorg. Med. Chem. 2003; 11: 1153
    • 2c LaCrue AN, Sáenz FE, Cross RM, Udenze KO, Monastyrskyi A, Stein S, Mutka TS, Manetsch R, Kyle DE. Antimicrob. Agents Chemother. 2013; 57: 417
    • 3a Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
    • 3b Corbet J.-P, Mignani G. Chem. Rev. 2006; 106: 2651
    • 4a Quinn J, Guo C, Ko L, Sun B, He Y, Li Y. RSC Adv. 2016; 6: 22043
    • 4b Bessette A, Hanan GS. Chem. Soc. Rev. 2014; 43: 3342
    • 4c Wu J.-S, Cheng S.-W, Cheng Y.-J, Hsu C.-S. Chem. Soc. Rev. 2015; 44: 1113
    • 4d Usta H, Facchetti A, Marks TJ. Acc. Chem. Res. 2011; 44: 501
    • 5a Ghosh I, Marzo L, Das A, Shaikh R, König B. Acc. Chem. Res. 2016; 49: 1566
    • 5b Ghosh P, Ganguly B, Das S. Org. Biomol. Chem. 2020; 18: 4497
    • 5c Zhang Y.-F, Shi Z.-J. Acc. Chem. Res. 2019; 52: 161
    • 5d Bonin H, Sauthier M, Felpin FX. Adv. Synth. Catal. 2014; 356: 645
    • 5e Ke Q, Yan G, Yu J, Wu X. Org. Biomol. Chem. 2019; 17: 5863
    • 6a McGlacken GP, Bateman LM. Chem. Soc. Rev. 2009; 38: 2447
    • 6b Liu B, Yang L, Li P, Wang F, Li X. Org. Chem. Front. 2021; 8: 1085
    • 6c Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 6d Chen F, Wang T, Jiao N. Chem. Rev. 2014; 114: 8613
    • 6e López LA, Lopez E. Dalton Trans. 2015; 44: 10128
    • 6f Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 6g Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T. Chem. Soc. Rev. 2018; 47: 6603
    • 7a Pagire SK, Hossain A, Reiser O. Org. Lett. 2018; 20: 648
    • 7b Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS. J. Am. Chem. Soc. 2011; 133: 18566
    • 7c Twilton J, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 1
    • 7d Zhang H.-H, Chen H, Zhu C, Yu S. Sci. China: Chem. 2020; 63: 637
    • 7e Toth BL, Tischler O, Novák Z. Tetrahedron Lett. 2016; 57: 4505
    • 7f Ye Y, Sanford MS. J. Am. Chem. Soc. 2012; 134: 9034
    • 8a Rossi R, Lessi M, Manzini C, Marianetti G, Bellina F. Adv. Synth. Catal. 2015; 357: 3777
    • 8b Roopan SM, Palaniraja J. Res. Chem. Intermed. 2015; 41: 8111
    • 8c Sun C.-L, Shi Z.-J. Chem. Rev. 2014; 114: 9219
    • 8d Shirakawa E, Hayashi T. Chem. Lett. 2012; 41: 130
  • 9 Staderini M, Bolognesi ML, Menéndez JC. Adv. Synth. Catal. 2015; 357: 185
  • 10 Sunke R, Bankala R, Thirupataiah B, Ramarao EV. V. S, Kumar JS, Doss HM, Medishetti R, Kulkarni P, Kapavarapu RK, Rasool M, Mudgal J, Mathew JE, Shenoy GG, Parsa KV. L, Pal M. Eur. J. Med. Chem. 2019; 174: 198
  • 11 Liu Z, Wang P, Chen Y, Yan Z, Chen S, Chen W, Mu T. RSC Adv. 2020; 10: 14500
  • 12 Shan X.-H, Yang B, Zheng H.-X, Qu J.-P, Kang Y.-B. Org. Lett. 2018; 20: 7898
  • 13 Caramenti P, Nandi RK, Waser J. Chem. Eur. J. 2018; 24: 10049
  • 14 Golshani M, Khoobi M, Jalalimanesh N, Jafarpour F, Ariafard A. Chem. Commun. 2017; 53: 10676
  • 15 Zhang X, Feng X, Zhou C, Yu X, Yamamoto Y, Bao M. Org. Lett. 2018; 20: 7095
  • 16 Chen X, Cui X, Yang F, Wu Y. Org. Lett. 2015; 17: 1445
  • 17 Shan Y, Lai M, Li R, Wu Z, Zhao M. Asian J. Org. Chem. 2017; 6: 1715
  • 18 Bering L, Antonchick AP. Org. Lett. 2015; 17: 3134
  • 19 Stephens DE, Lakey-Beitia J, Burch JE, Arman HD, Larionov OV. Chem. Commun. 2016; 52: 9945
  • 20 Barham JP, Coulthard G, Emery KJ, Doni E, Cumine F, Nocera G, John MP, Berlouis LE, McGuire T, Tuttle T. J. Am. Chem. Soc. 2016; 138: 7402
  • 21 Yuan J, Liu S, Qu L. Adv. Synth. Catal. 2017; 359: 4197
  • 22 Maity P, Kundu D, Ranu BC. Eur. J. Org. Chem. 2015; 2015: 1727
  • 23 Yin K, Zhang R. Synlett 2018; 29: 597
  • 24 Monzón DM, Santos T, Pinacho Crisóstomo F, Martín VS, Carrillo R. Chem. Asian J. 2018; 13: 325
  • 25 Ahmed J, Sreejyothi P, Vijaykumar G, Jose A, Raj M, Mandal SK. Chem. Sci. 2017; 8: 7798
  • 26 Adak T, Hu C, Rudolph M, Li J, Hashmi AS. K. Org. Lett. 2020; 22: 5640
  • 27 Zoller J, Fabry DC, Rueping M. ACS Catal. 2015; 5: 3900
  • 28 Kalay E, Küçükkeçeci H, Kilic H, Metin Ö. Chem. Commun. 2020; 56: 5901
  • 29 Kwon SJ, Jung HI, Kim DY. ChemistrySelect 2018; 3: 5824
  • 30 Chaubey NR, Vishwakarma RK, Singh KN. ChemistrySelect 2019; 4: 8522
  • 31 Ravi M, Chauhan P, Kant R, Shukla SK, Yadav PP. J. Org. Chem. 2015; 80: 5369
  • 32 Chauhan P, Ravi M, Singh S, Prajapati P, Yadav PP. RSC Adv. 2016; 6: 109
  • 33 Taniguchi T, Imoto M, Takeda M, Matsumoto F, Nakai T, Mihara M, Mizuno T, Nomoto A, Ogawa A. Tetrahedron 2016; 72: 4132
  • 34 Kocaoğlu E, Karaman MA, Tokgöz H, Talaz O. ACS Omega 2017; 2: 5000
  • 35 Paul S, Ha JH, Park GE, Lee YR. Adv. Synth. Catal. 2017; 359: 1515
  • 36 Dutta NB, Bhuyan M, Baishya G. RSC Adv. 2020; 10: 3615
  • 37 Thatikonda T, Singh U, Ambala S, Vishwakarma RA, Singh PP. Org. Biomol. Chem. 2016; 14: 4312
  • 38 Nozawa-Kumada K, Iwakawa Y, Onuma S, Shigeno M, Kondo Y. Chem. Commun. 2020; 56: 7773
  • 39 Yu F, Mao R, Yu M, Gu X, Wang Y. J. Org. Chem. 2019; 84: 9946
  • 40 Shigeno M, Kai Y, Yamada T, Hayashi K, Nozawa Kumada K, Denneval C, Kondo Y. Asian J. Org. Chem. 2018; 7: 2082
  • 41 Chen J, Wu J. Angew. Chem. Int. Ed. 2017; 56: 3951
  • 42 Yin K, Zhang R. Org. Lett. 2017; 19: 1530
  • 43 Zhou X, Wu Q, Yu Y, Yu C, Hao E, Wei Y, Mu X, Jiao L. Org. Lett. 2016; 18: 736
  • 44 Kumar R, Ravi C, Rawat D, Adimurthy S. Eur. J. Org. Chem. 2018; 2018: 1665
  • 45 Uçar S, Daştan A. J. Heterocycl. Chem. 2020; 57: 4013
  • 46 Ndlovu NT, Nxumalo W. Molecules 2016; 21: 1304
  • 47 Uçar S, Daştan A. J. Org. Chem. 2020; 85: 15502
    • 48a Azev YA, Ermakova O, Berseneva V, Bakulev V, Ezhikova MA, Kodess M. Russ. J. Org. Chem. 2017; 53: 90
    • 48b Azev YA, Ermakova O, Ezhikova MA, Kodess M, Berseneva V, Kovalev I. Chem. Nat. Compd. 2017; 53: 519
  • 49 Xu J, Zhang H, Zhao J, Ni Z, Zhang P, Shi B.-F, Li W. Org. Chem. Front. 2020; 7: 4031
  • 50 Noikham M, Kittikool T, Yotphan S. Synthesis 2018; 50: 2337
  • 51 Lu C, Huang H, Tuo X, Jiang P, Zhang F, Deng G.-J. Org. Chem. Front. 2019; 6: 2738
  • 52 Sharma A, Gogoi P. Org. Biomol. Chem. 2019; 17: 9014
  • 53 Utepova I, Trestsova M, Chupakhin O, Charushin V, Rempel A. Green Chem. 2015; 17: 4401
  • 54 Kumar S, Rathore V, Verma A, Prasad CD, Kumar A, Yadav A, Jana S, Sattar M, Kumar S. Org. Lett. 2015; 17: 82
  • 55 Niu ZJ, Li LH, Liu XY, Liang YM. Adv. Synth. Catal. 2019; 361: 5217
  • 56 Liang K, Li N, Zhang Y, Li T, Xia C. Chem. Sci. 2019; 10: 3049
  • 57 Gonda Z, Novák Z. Chem. Eur. J. 2015; 21: 16801
  • 58 Riedmüller S, Nachtsheim BJ. Synlett 2015; 26: 651
  • 59 Bi WZ, Zhang WJ, Li ZJ, Feng SX, Chen XL, Qu LB. ChemistrySelect 2020; 5: 14320
  • 60 Liao C, Li J, Chen X, Lu J, Liu Q, Chen L, Huang Y, Li Y. Org. Biomol. Chem. 2020; 18: 1185
  • 61 Sun M, Wang L, Zhao L, Wang Z, Li P. ChemCatChem 2020; 12: 5261
  • 62 Wimonsong W, Yotphan S. Tetrahedron 2021; 81: 131919
  • 63 Zhao F, Sun T, Sun H, Xi G, Sun K. Tetrahedron Lett. 2017; 58: 3132