Synthesis 2021; 53(15): 2612-2620
DOI: 10.1055/a-1478-7002
psp

Synthesis of Ferrocenesulfonyl Chloride: Key Intermediate toward Ferrocenesulfonamides

William Erb
,
Min Wen
,
Thierry Roisnel
,
This work was supported by the Agence Nationale de la Recherche (Ferrodance project) and the Université de Rennes 1.


Abstract

Ferrocenesulfonyl chloride is the key intermediate in the synthesis of ferrocenesulfonamides, a family of underexplored derivatives. A one-pot synthesis of this compound, able to easily deliver multigram quantities of product, is reported. An original protocol for the synthesis of ferrocenesulfonamides is described along with highlighting the reactivity difference between arene and ferrocenesulfonyl chlorides. Finally, an example of diastereoselective deprotolithiation of chiral ferrocenesulfonamides is described.

Supporting Information



Publication History

Received: 24 February 2021

Accepted after revision: 09 April 2021

Accepted Manuscript online:
09 April 2021

Article published online:
26 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science. Togni A, Hayashi T. VCH; Weinheim: 1995
    • 1b Ferrocenes: Ligands, Materials and Biomolecules. Štěpnička P. Wiley; Chichester: 2008
    • 1c Chiral Ferrocenes in Asymmetric Catalysis. Dai L.-X, Hou X.-L. Wiley-VCH; Weinheim: 2010
    • 1d Astruc D. Eur. J. Inorg. Chem. 2017; 6
    • 1e Patra M, Gasser G. Nat. Rev. Chem. 2017; 1: 66
    • 1f Zhu JC, Cui DX, Li YD, Jiang R, Chen WP, Wang PA. ChemCatChem 2018; 10: 907
    • 1g Singh A, Lumb I, Mehra V, Kumar V. Dalton Trans. 2019; 48: 2840
    • 2a De Blas A, De Santis G, Fabbrizzi L, Licchelli M, Mangano C, Pallavicini P. Inorg. Chim. Acta 1992; 202: 115
    • 2b De Santis G, Fabbrizzi L, Licchelli M, Mangano C, Pallavicini P, Poggi A. Inorg. Chem. 1993; 32: 854
    • 3a Llobet A, Masllorens E, Moreno-Mañas M, Pla-Quintana A, Rodríguez M, Roglans A. Tetrahedron Lett. 2002; 43: 1425
    • 3b Masllorens J, Moreno-Mañas M, Pla-Quintana A, Roglans A. Org. Lett. 2003; 5: 1559
    • 3c Llobet A, Masllorens E, Rodríguez M, Roglans A, Benet-Buchholz J. Eur. J. Inorg. Chem. 2004; 1601
    • 3d Blanco B, Christensen J, Maurel I, Pleixats R, Serra A, Pla-Quintana A, Roglans A, Benet-Buchholz J. Synthesis 2005; 374
    • 3e Masllorens J, Bouquillon S, Roglans A, Hénin F, Muzart J. J. Organomet. Chem. 2005; 690: 3822
    • 3f Pla-Quintana A, Roglans A, de Julián-Ortiz JV, Moreno-Mañas M, Parella T, Benet-Buchholz J, Solans X. Chem. Eur. J. 2005; 11: 2689
    • 3g Pla-Quintana A, Torrent A, Dachs A, Roglans A, Pleixats R, Moreno-Mañas M, Parella T, Benet-Buchholz J. Organometallics 2006; 25: 5612
    • 3h Masllorens J, González I, Roglans A. Eur. J. Org. Chem. 2007; 158
  • 4 Jonek M, Makhloufi A, Rech P, Frank W, Ganter C. J. Organomet. Chem. 2014; 750: 140
    • 5a Herberhold M, Nuyken O, Pöhlmann T. J. Organomet. Chem. 1995; 501: 13
    • 5b Nagahora N, Ogawa S, Kawai Y, Sato R. Tetrahedron Lett. 2002; 43: 5825
    • 5c Hiroki M, Satoshi O, Noriyoshi N, Yasushi K, Ryu S. Bull. Chem. Soc. Jpn. 2005; 78: 2026
    • 5d Nagahora N, Ogawa S, Kawai Y, Sato R. Tetra­hedron Lett. 2005; 46: 4157
  • 6 Homann-Müller T, Rieger E, Alkan A, Wurm FR. Polym. Chem. 2016; 7: 5501
  • 7 OuYang H, Gao Y, Yuan Y. Tetrahedron Lett. 2013; 54: 2964
  • 8 Gélinas B, Das D, Rochefort D. ACS Appl. Mater. Interfaces 2017; 9: 28726
  • 9 Simionescu C, Lixandru T, Scutaru D, Vâţǎ M. J. Organomet. Chem. 1985; 292: 269
    • 10a Besenyei G, Párkányi L, Németh S, Simándi LI. J. Organomet. Chem. 1998; 563: 81
    • 10b Li M, Bai Y, Lu J, Yang B, Zhu K, Ma H. J. Organomet. Chem. 2001; 637–639: 738
    • 10c Yang YT, Yang BQ, Li M, Ning W, Lu ZH. Synth. Commun. 2008; 38: 530
    • 10d Yue K, Zhuo F, Zhai G, Hou L, Hou Y, Yin B, Wang Y. Chin. J. Chem. 2011; 29: 223
    • 10e Chanawanno K, Holstrom C, Crandall LA, Dodge H, Nemykin VN, Herrick RS, Ziegler CJ. Dalton Trans. 2016; 45: 14320
    • 10f Chanawanno K, Holstrom C, Nemykin VN, Herrick RS, Ziegler CJ. ChemistrySelect 2016; 1: 6438
    • 10g Chanawanno K, Blesener TS, Schrage BR, Nemykin VN, Herrick RS, Ziegler CJ. J. Organomet. Chem. 2018; 870: 121
    • 11a Weinmayr V. J. Am. Chem. Soc. 1955; 77: 3009
    • 11b Nesmeyanov AN, Perevalova ÉG, Churanov SS. Dokl. Akad. Nauk SSSR 1958; 114: 335
  • 12 Knox GR, Pauson PL. J. Chem. Soc. 1958; 692
  • 13 Falk H, Krasa C, Schlögl K. Monatsh. Chem. 1969; 100: 1552
  • 14 Nesmeyanov AN, Perevalova ÉG, Churanov SS, Nesmeyanova OA. Dokl. Akad. Nauk SSSR 1958; 119: 949
  • 15 Slocum DW, Achermann W. Synth. React. Inorg. Met.-Org. Chem. 1982; 12: 397
  • 16 Wen M, Erb W, Mongin F, Halauko YS, Ivashkevich OA, Matulis VE, Roisnel T, Dorcet V. Organometallics 2021; 40 DOI: 10.1021/acs.organomet.1c00091.
    • 17a Woolven H, González-Rodríguez C, Marco I, Thompson AL, Willis MC. Org. Lett. 2011; 13: 4876
    • 17b Deeming AS, Russell CJ, Willis MC. Angew. Chem. Int. Ed. 2015; 54: 1168
    • 18a Emmett EJ, Hayter BR, Willis MC. Angew. Chem. Int. Ed. 2013; 52: 12679
    • 18b Deeming AS, Russell CJ, Hennessy AJ, Willis MC. Org. Lett. 2014; 16: 150
  • 19 Lenstra DC, Vedovato V, Ferrer Flegeau E, Maydom J, Willis MC. Org. Lett. 2016; 18: 2086
  • 20 Lo PK. T, Oliver GA, Willis MC. J. Org. Chem. 2020; 85: 5753
  • 21 Sanders R, Mueller-Westerhoff UT. J. Organomet. Chem. 1996; 512: 219
  • 22 Waldmann C, Schober O, Haufe G, Kopka K. Org. Lett. 2013; 15: 2954
  • 23 Cox RL, Schneider TW, Koppang MD. Anal. Chim. Acta 1992; 262: 145
  • 24 Kanzian T, Nigst TA, Maier A, Pichl S, Mayr H. Eur. J. Org. Chem. 2009; 6379
  • 25 Although p-methoxybenzenesulfonyl chloride might mimic more closely the electronic features of ferrocenesulfonyl chloride, p-methoxybenzenesulfonyl chloride and p-tosyl chloride are as reactive in related reactions, see: Schneider C, Broda E, Snieckus V. Org. Lett. 2011; 13: 3588
  • 26 During the writing of this manuscript, another example of ferrocenesulfonamide diastereoselective deprotolithiation was reported February 19, 2021, see: Ravutsov M, Dobrikov GM, Dangalov M, Nikolova R, Dimitrov V, Mazzeo G, Longhi G, Abbate S, Paoloni L, Fusè M, Barone V. Organometallics 2021; 40: 578
    • 27a Marquarding D, Klusacek H, Gokel G, Hoffmann P, Ugi I. J. Am. Chem. Soc. 1970; 92: 5389
    • 27b Rebière F, Riant O, Ricard L, Kagan HB. Angew. Chem., Int. Ed. Engl. 1993; 32: 568
    • 27c Riant O, Samuel O, Kagan HB. J. Am. Chem. Soc. 1993; 115: 5835
    • 27d Richards CJ, Damalidis T, Hibbs DE, Hursthouse MB. Synlett 1995; 74
    • 27e Sammakia T, Latham HA. J. Org. Chem. 1995; 60: 6002
    • 27f Sammakia T, Latham HA, Schaad DR. J. Org. Chem. 1995; 60: 10
    • 27g Riant O, Samuel O, Flessner T, Taudien S, Kagan HB. J. Org. Chem. 1997; 62: 6733
    • 27h Riant O, Argouarch G, Guillaneux D, Samuel O, Kagan HB. J. Org. Chem. 1998; 63: 3511
  • 28 Burchat AF, Chong JM, Nielsen N. J. Organomet. Chem. 1997; 542: 281
  • 29 Gottlieb HE, Kotlyar V, Nudelman A. J. Org. Chem. 1997; 62: 7512
  • 30 CCDC 2063540 (2), 2063541 (3a), 2063542 (3b), 2063543 (3c), 2063544 (3g), 2063545 (3h), 2063546 (3k), and 2063549 (9) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
  • 31 Boev VI, Osipenko AS, Dombrovskii AV. Zh. Obshch. Khim. 1977; 47: 426
  • 32 Wang S, Li Y, Yang X, Shi S. Fenxi Huaxue 1997; 25: 341
  • 33 Soltani Rad MN, Khalafi-Nezhad A, Asrari Z, Behrouz S, Amini Z, Behrouz M. Synthesis 2009; 3983
  • 34 Harmata M, Zheng P, Huang C, Gomes MG, Ying W, Ranyanil K.-O, Balan G, Calkins NL. J. Org. Chem. 2007; 72: 683