Abstract
Asymmetric aminocatalysis has become a well-established and powerful
synthetic tool for the chemo- and enantioselective functionalization
of carbonyl compounds. Recent studies have established the unique
ability of primary amine catalysis to participate in processes between
sterically demanding partners, thus overcoming the inherent difficulties
of chiral secondary amines in generating congested covalent intermediates.
With this in mind, we introduced the primary amine catalyst salt 1 , made by combining the easily available
9-amino-9-deoxy-epi -hydroquinine with N -Boc-d -phenylglycine
as the chiral counteranion. Salt 1 exhibits high
reactivity and selectivity in the enantioselective conjugate additions
of a series of different nucleophiles to unsaturated ketones. The
rationale behind the development of this general and efficient iminium
activator of enones is discussed.
1 Introduction
2 Iminium Catalysis
3 Iminium Activation of Unsaturated Ketones
3.1 Chiral Primary Amines in Iminium Catalysis
3.2 Asymmetric Counteranion-Directed Catalysis
4 A New Catalyst Salt for Iminium Activation of Enones: 9-Amino-9-deoxy-epi -hydroquinine and N -Boc-d -phenylglycine
4.1 Friedel-Crafts Alkylation of Indoles
4.2 Oxa-Michael Addition
4.3 Sulfa-Michael Addition
5 Summary and Outlook
Key words
amines - asymmetric catalysis - ketones - organocatalysis - Michael additions
References
For general reviews on asymmetric
organocatalysis, see:
<A NAME="RA48708ST-1A">1a </A>
Enantioselective
Organocatalysis
Dalko PI.
Wiley-VCH;
Weinheim:
2007.
<A NAME="RA48708ST-1B">1b </A>
Gaunt MJ.
Johansson CCC.
McNally A.
Vo NT.
Drug
Discovery Today
2007,
12:
8
<A NAME="RA48708ST-1C">1c </A>
List B.
Yang JW.
Science (Washington, D.C.)
2006,
313:
1584
<A NAME="RA48708ST-1D">1d </A> The special issue devoted
to ‘Asymmetric Organocatalysis’ (List, B., Ed.): Chem.
Rev.
2007,
107:
5413-5883
<A NAME="RA48708ST-2A">2a </A>
Barbas CF.
Angew.
Chem. Int. Ed.
2008,
47:
42
<A NAME="RA48708ST-2B">2b </A>
List B.
Chem.
Commun.
2006,
819
<A NAME="RA48708ST-2C">2c </A>
Marigo M.
Jørgensen KA.
Chem.
Commun.
2006,
2001
<A NAME="RA48708ST-3">3 </A> For a review, see:
Mukherjee S.
Yang JW.
Hoffmann S.
List B.
Chem. Rev.
2007,
107:
5471
<A NAME="RA48708ST-4A">4a </A>
Beeson TD.
Mastracchio A.
Hong J.-B.
Ashton K.
MacMillan DWC.
Science
(Washington, D.C.)
2007,
316:
582
<A NAME="RA48708ST-4B">4b </A>
Jang H.-Y.
Hong J.-B.
MacMillan DWC.
J. Am. Chem. Soc.
2007,
129:
7004
<A NAME="RA48708ST-4C">4c </A>
Kim H.
MacMillan DWC.
J. Am.
Chem. Soc.
2008,
130:
398
<A NAME="RA48708ST-4D">4d </A>
Sibi MP.
Hasegawa M.
J. Am.
Chem. Soc.
2007,
129:
4124
For recent highlights, see:
<A NAME="RA48708ST-4E">4e </A>
Mukherjee S.
List B.
Nature (London)
2007,
447:
152
<A NAME="RA48708ST-4F">4f </A>
Bertelsen S.
Nielsen M.
Jørgensen KA.
Angew. Chem. Int. Ed.
2007,
46:
7356
For reviews on asymmetric iminium
ion catalysis, see:
<A NAME="RA48708ST-5A">5a </A>
Lelais G.
MacMillan DWC.
Aldrichimica
Acta
2006,
39:
79
<A NAME="RA48708ST-5B">5b </A>
Erkkilä A.
Majander I.
Pihko PM.
Chem. Rev.
2007,
107:
5416
For recent, general reviews on organocatalytic asymmetric
conjugate additions, see:
<A NAME="RA48708ST-5C">5c </A>
Tsogoeva SB.
Eur. J. Org. Chem.
2007,
1701
<A NAME="RA48708ST-5D">5d </A>
Vicario JL.
Badia D.
Carrillo L.
Synthesis
2007,
2065
<A NAME="RA48708ST-6A">6a </A>
Bertelsen S.
Marigo M.
Brandes S.
Dinér P.
Jørgensen KA.
J. Am.
Chem. Soc.
2006,
128:
12973
<A NAME="RA48708ST-6B">6b </A>
Hong B.-C.
Wu M.-F.
Tseng H.-C.
Huang G.-F.
Su C.-F.
Liao J.-H.
J. Org. Chem.
2007,
72:
8459
<A NAME="RA48708ST-6C">6c </A>
de Figueiredo RM.
Fröhlich R.
Christmann M.
Angew. Chem. Int. Ed.
2008,
47:
1450
For selected examples of metal-catalyzed
asymmetric functionalization of ketones, see:
<A NAME="RA48708ST-7A">7a </A>
Enders D.
Eichenauer H.
Chem. Ber.
1979,
112:
2933
<A NAME="RA48708ST-7B">7b </A>
Imai M.
Hagihara A.
Kawasaki H.
Manabe K.
Koga K.
J.
Am. Chem. Soc.
1994,
116:
8829
<A NAME="RA48708ST-7C">7c </A>
Behenna DC.
Stoltz BM.
J.
Am. Chem. Soc.
2004,
126:
15044
<A NAME="RA48708ST-7D">7d </A>
Trost BM.
Xu J.
J. Am. Chem.
Soc.
2005,
127:
2846
<A NAME="RA48708ST-7E">7e </A>
Braun M.
Meier T.
Synlett
2005,
2968
For selected examples of phase-transfer catalysis, see:
<A NAME="RA48708ST-7F">7f </A>
Dolling UH.
Davis P.
Grabowski EJJ.
J. Am. Chem. Soc.
1984,
106:
446
<A NAME="RA48708ST-7G">7g </A>
O’Donnel MJ.
Bennett WD.
Wu S.
J. Am. Chem. Soc.
1989,
111:
2353
<A NAME="RA48708ST-8">8 </A> For a recent review on chiral primary
amine catalysis, see:
Peng F.
Shao Z.
J. Mol. Catal. A: Chem.
2008,
285:
1
For indole alkylation, see:
<A NAME="RA48708ST-9A">9a </A>
Bartoli G.
Bosco M.
Carlone A.
Pesciaioli F.
Sambri L.
Melchiorre P.
Org. Lett.
2007,
9:
1403
For the oxa-Michael reaction, see:
<A NAME="RA48708ST-9B">9b </A>
Carlone A.
Bartoli G.
Bosco M.
Pesciaioli F.
Ricci P.
Sambri L.
Melchiorre P.
Eur.
J. Org. Chem.
2007,
5492
For the sulfa-Michael reaction, see:
<A NAME="RA48708ST-9C">9c </A>
Ricci P.
Carlone A.
Bartoli G.
Bosco M.
Sambri L.
Melchiorre P.
Adv. Synth. Catal.
2008,
350:
49
<A NAME="RA48708ST-10">10 </A> Amine 2 is
easily prepared by the Mitsunobu reaction of the commercially available
hydroquinine. For the first reported preparation of 9-amino-9-deoxy-epi -quinine, see:
Brunner H.
Bügler J.
Nuber B.
Tetrahedron:
Asymmetry
1995,
6:
1699
<A NAME="RA48708ST-11A">11a </A>
Mayer S.
List B.
Angew.
Chem. Int. Ed.
2006,
45:
4193
<A NAME="RA48708ST-11B">11b </A>
Martin NJA.
List B.
J.
Am. Chem. Soc.
2006,
128:
13368
<A NAME="RA48708ST-11C">11c </A>
Zhou J.
List B.
J. Am. Chem. Soc.
2007,
129:
7498
<A NAME="RA48708ST-11D">11d </A>
Wang X.
List B.
Angew. Chem. Int. Ed.
2008,
47:
1119
Asymmetric addition of C-based
nucleophiles to enones: For direct vinylogous addition of α,α-dicyanoalkenes,
see:
<A NAME="RA48708ST-12A">12a </A>
Xie J.-W.
Chen W.
Li R.
Zeng M.
Du W.
Yue L.
Chen Y.-C.
Wu Y.
Zhu J.
Deng J.-G.
Angew. Chem.
Int. Ed.
2007,
46:
389
For addition of cyclic 1,3-dicarbonyl compounds, see:
<A NAME="RA48708ST-12B">12b </A>
Xie J.-W.
Yue L.
Chen W.
Du W.
Zhu J.
Deng J.-G.
Chen Y.-C.
Org. Lett.
2007,
9:
413
For indole alkylation, see:
<A NAME="RA48708ST-12C">12c </A>
Chen W.
Du W.
Yue L.
Li R.
Wu Y.
Ding L.-S.
Chen Y.-C.
Org. Biomol. Chem.
2007,
5:
816
For malononitrile addition, see:
<A NAME="RA48708ST-12D">12d </A>
Li X.
Cun L.
Lian C.
Zhong L.
Chen Y.
Liao J.
Zhu J.
Deng J.
Org.
Biomol. Chem.
2008,
6:
349
For Diels-Alder reaction, see:
<A NAME="RA48708ST-12E">12e </A>
Singh RP.
Bartelson K.
Wang Y.
Su H.
Lu X.
Deng L.
J. Am. Chem. Soc.
2008,
130:
2422
For a recent ACDC approach with a multifunctional primary amine
catalyst, see:
<A NAME="RA48708ST-12F">12f </A>
Chen W.
Du W.
Duan Y.-Z.
Wu Y.
Yang S.-Y.
Chen Y.-C.
Angew.
Chem. Int. Ed.
2007,
46:
7667
Recently, in addition to their
generality as iminium activators, 9-amino-9-deoxy-epi -cinchona
alkaloids have also been successfully employed for the asymmetric α-functionalization
of ketones via enamine catalysis. See:
<A NAME="RA48708ST-13A">13a </A>
McCooey SH.
Connon SJ.
Org.
Lett.
2007,
9:
599
<A NAME="RA48708ST-13B">13b </A>
Liu T.-Y.
Cui H.-L.
Zhang Y.
Jiang K.
Du W.
He Z.-Q.
Chen Y.-C.
Org. Lett.
2007,
9:
3671
<A NAME="RA48708ST-13C">13c </A>
Zheng
B.-L.
Liu Q.-Z.
Guo C.-S.
Wang X.-L.
He L.
Org. Biomol.
Chem.
2007,
5:
2913
<A NAME="RA48708ST-14">14 </A>
Ahrendt KA.
Borths CJ.
MacMillan DWC.
J. Am. Chem. Soc.
2000,
122:
4243. For a personal account by D. W. C.
MacMillan on the rationale behind this new organocatalytic concept,
see ref. 1a, Chap. 3, pp 95-120
<A NAME="RA48708ST-15A">15a </A>
Jen WS.
Wiener JJM.
MacMillan DWC.
J.
Am. Chem. Soc.
2000,
122:
9874
<A NAME="RA48708ST-15B">15b </A>
Paras NA.
MacMillan DWC.
J.
Am. Chem. Soc.
2001,
123:
4370
<A NAME="RA48708ST-15C">15c </A>
Ouellet SG.
Tuttle JB.
MacMillan DWC.
J. Am. Chem. Soc.
2005,
127:
32
<A NAME="RA48708ST-15D">15d </A>
Kunz RK.
MacMillan DWC.
J.
Am. Chem. Soc.
2005,
127:
3240
Selected examples: For conjugate
addition of electron-rich benzenes, see:
<A NAME="RA48708ST-16A">16a </A>
Paras NA.
MacMillan DWC.
J.
Am. Chem. Soc.
2002,
124:
7894
For Mukaiyama-Michael reaction, see:
<A NAME="RA48708ST-16B">16b </A>
Brown SP.
Goodwin NC.
MacMillan DWC.
J. Am. Chem. Soc.
2003,
125:
1192
For addition of amines, see:
<A NAME="RA48708ST-16C">16c </A>
Chen YK.
Yoshida M.
MacMillan DWC.
J. Am. Chem. Soc.
2006,
128:
9328
For [4+3] cycloaddition reactions,
see:
<A NAME="RA48708ST-16D">16d </A>
Harmata M.
Ghosh SK.
Hong X.
Wacharasindhu S.
Kirchhoefer P.
J.
Am. Chem. Soc.
2003,
125:
2058
For intramolecular Diels-Alder reactions, see:
<A NAME="RA48708ST-16E">16e </A>
Wilson RM.
Jen WS.
MacMillan DWC.
J. Am. Chem. Soc.
2005,
127:
11616
<A NAME="RA48708ST-16F">16f </A>
Selkälä SA.
Koskinen AMP.
Eur.
J. Org. Chem.
2005,
1620
For hydride addition, see:
<A NAME="RA48708ST-16G">16g </A>
Yang JW.
Hechavarria Fonseca MT.
Vignola N.
List B.
Angew. Chem.
Int. Ed.
2005,
44:
108
Selected examples of enal conjugate
additions: For C-nucleophiles, see:
<A NAME="RA48708ST-17A">17a </A>
Brandau S.
Landa A.
Franzén J.
Marigo M.
Jørgensen KA.
Angew. Chem. Int. Ed.
2006,
45:
4305
<A NAME="RA48708ST-17B">17b </A>
Gotoh H.
Masui R.
Ogino H.
Shoji M.
Hayashi Y.
Angew. Chem.
Int. Ed.
2006,
45:
6853
<A NAME="RA48708ST-17C">17c </A>
Enders D.
Bonten MH.
Raabe G.
Synlett
2007,
885
For cycloaddition reactions, see:
<A NAME="RA48708ST-17D">17d </A>
Gotoh H.
Hayashi Y.
Org. Lett.
2007,
9:
2859
For N-Nucleophiles, see:
<A NAME="RA48708ST-17E">17e </A>
Dinér P.
Nielsen M.
Marigo M.
Jørgensen KA.
Angew.
Chem. Int. Ed.
2007,
46:
1983
<A NAME="RA48708ST-17F">17f </A>
Ibrahem I.
Rios R.
Vesely J.
Zhao G.-L.
Córdova A.
Chem.
Commun.
2007,
849
For O-Nucleophiles, see:
<A NAME="RA48708ST-17G">17g </A>
Bertelsen S.
Dinér P.
Johansen RL.
Jørgensen KA.
J.
Am. Chem. Soc.
2007,
129:
1536
For S-Nucleophiles, see:
<A NAME="RA48708ST-17H">17h </A>
Marigo M.
Schulte T.
Franzen J.
Jorgensen KA.
J. Am. Chem. Soc.
2005,
127:
15710
For P-Nucleophiles, see:
<A NAME="RA48708ST-17I">17i </A>
Carlone A.
Bartoli G.
Bosco M.
Sambri L.
Melchiorre P.
Angew.
Chem. Int. Ed.
2007,
46:
4504
<A NAME="RA48708ST-17J">17j </A>
Ibrahem I.
Rios R.
Vesely J.
Hammar P.
Eriksson L.
Himo F.
Córdova A.
Angew.
Chem. Int. Ed.
2007,
46:
4507 .
For a recent review on the use of a,a-diarylprolinol ethers in aminocatalysis,
see: (k) Mielgo, A.; Palomo, C. Chem. Asian
J. 2008 , 3 ,
922
<A NAME="RA48708ST-18A">18a </A>
Northrup AB.
MacMillan DWC.
J. Am. Chem. Soc.
2002,
124:
2458
For the use of 7 in asymmetric
transfer hydrogenation of cyclic enones, see:
<A NAME="RA48708ST-18B">18b </A>
Tuttle JB.
Ouellet SG.
MacMillan DWC.
J. Am. Chem. Soc.
2006,
128:
12662
For theoretical studies on iminium-catalyzed Diels-Alder
reactions with unsaturated aldehydes and ketones, see:
<A NAME="RA48708ST-18C">18c </A>
Gordillo R.
Houk NK.
J. Am. Chem. Soc.
2006,
128:
3543
For previous studies on proline-
and proline-derivative-catalyzed addition of carbogenic nucleophiles
to cyclic enones, see:
<A NAME="RA48708ST-19A">19a </A>
Yamaguchi M.
Shiraishi T.
Hirama M.
J. Org. Chem.
1996,
61:
3520 ; and references cited therein
<A NAME="RA48708ST-19B">19b </A>
Hanessian S.
Pharm V.
Org. Lett.
2000,
2:
2975
<A NAME="RA48708ST-20A">20a </A>
Halland N.
Hazell RG.
Jørgensen KA.
J. Org. Chem.
2002,
67:
8331
<A NAME="RA48708ST-20B">20b </A>
Halland N.
Aburel PS.
Jørgensen KA.
Angew. Chem. Int. Ed.
2003,
42:
661
<A NAME="RA48708ST-20C">20c </A>
Halland N.
Aburel PS.
Jørgensen KA.
Angew. Chem. Int. Ed.
2004,
43:
1272
<A NAME="RA48708ST-20D">20d </A>
Pulkkinen J.
Aburel PS.
Halland N.
Jørgensen KA.
Adv. Synth.
Catal.
2004,
346:
1077
<A NAME="RA48708ST-21">21 </A>
Heine A.
DeSantis G.
Luz JG.
Mitchell M.
Wong C.-H.
Science
(Washington, D.C.)
2001,
294:
369 ;
and references cited therein
<A NAME="RA48708ST-22A">22a </A>
Clark RA.
Parker DC.
J. Am. Chem. Soc.
1971,
93:
7257
<A NAME="RA48708ST-22B">22b </A>
Boyd DR.
Jennings WB.
Waring LC.
J. Org. Chem.
1986,
51:
992
<A NAME="RA48708ST-22C">22c </A>
Capon B.
Wu Z.-P.
J. Org. Chem.
1990,
55:
2317 ; and references cited therein
<A NAME="RA48708ST-23A">23a </A>
List B.
Tetrahedron
2002,
58:
5573
<A NAME="RA48708ST-23B">23b </A>
Movassaghi M.
Jacobsen EN.
Science (Washington,
D.C.)
2002,
298:
1904
For selected examples, see:
<A NAME="RA48708ST-24A">24a </A>
Bassan A.
Zou W.
Reyes E.
Himo F.
Córdova A.
Angew.
Chem. Int. Ed.
2005,
44:
7028
<A NAME="RA48708ST-24B">24b </A>
Ramasastry SSV.
Zhang H.
Tanaka F.
Barbas CF.
J.
Am. Chem. Soc.
2007,
129:
288
<A NAME="RA48708ST-24C">24c </A>
Luo S.
Xu H.
Li J.
Zhang L.
Cheng J.-P.
J. Am. Chem.
Soc.
2007,
129:
3074 ;
and references cited therein
<A NAME="RA48708ST-25A">25a </A>
Xu Y.
Zou W.
Sundén H.
Ibrahem I.
Córdova A.
Adv. Synth. Catal.
2006,
348:
418
<A NAME="RA48708ST-25B">25b </A>
Xu Y.
Córdova A.
Chem. Commun.
2006,
460 ; and references cited therein
For very meaningful examples of
the potential of primary amines in enamine activation of ketones,
see:
<A NAME="RA48708ST-26A">26a </A>
Tsogoeva SB.
Wei S.
Chem. Commun.
2006,
1451
<A NAME="RA48708ST-26B">26b </A>
Huang H.
Jacobsen EN.
J. Am. Chem. Soc.
2006,
128:
7170
See also:
<A NAME="RA48708ST-26C">26c </A>
Lalonde MP.
Chen Y.
Jacobsen EN.
Angew. Chem. Int. Ed.
2006,
45:
6366
<A NAME="RA48708ST-27A">27a </A>
Ishihara K.
Nakano K.
J.
Am. Chem. Soc.
2005,
127:
10504
See also:
<A NAME="RA48708ST-27B">27b </A>
Sakakura A.
Suzuki K.
Nakano K.
Ishihara K.
Org. Lett.
2006,
8:
2229
<A NAME="RA48708ST-27C">27c </A>
Ishihara K.
Nakano K.
J. Am. Chem. Soc.
2007,
129:
8930
<A NAME="RA48708ST-28A">28a </A>
Kim H.
Yen C.
Preston P.
Chin J.
Org. Lett.
2006,
8:
5239
<A NAME="RA48708ST-28B">28b </A>
Halland N.
Hansen T.
Jørgensen KA.
Angew. Chem. Int. Ed.
2003,
42:
4955
For an early example of iminium activation of cyclic enones
by primary amine catalysis, see:
<A NAME="RA48708ST-28C">28c </A>
Tsogoeva SB.
Jagtap SB.
Synlett
2004,
2624
For recent reviews, see:
<A NAME="RA48708ST-29A">29a </A>
Akiyama T.
Chem.
Rev.
2007,
107:
5744
<A NAME="RA48708ST-29B">29b </A>
Connon SJ.
Angew. Chem. Int. Ed.
2006,
45:
3909
<A NAME="RA48708ST-30A">30a </A>
Bartoli G.
Bosco M.
Carlone A.
Locatelli M.
Mazzanti A.
Sambri L.
Melchiorre P.
Chem. Commun.
2007,
722
<A NAME="RA48708ST-30B">30b </A>
Bartoli G.
Bosco M.
Carlone A.
Cavalli A.
Locatelli M.
Mazzanti A.
Ricci P.
Sambri L.
Melchiorre P.
Angew.
Chem. Int. Ed.
2006,
45:
4966
<A NAME="RA48708ST-30C">30c </A>
Bartoli G.
Bosco M.
Carlone A.
Locatelli M.
Melchiorre P.
Sambri L.
Angew. Chem. Int. Ed.
2005,
44:
6219
<A NAME="RA48708ST-31">31 </A> For a recent review, see:
Tian S.-K.
Chen Y.
Hang J.
Tang L.
McDaid P.
Deng L.
Acc. Chem. Res.
2004,
37:
621
For reviews on asymmetric catalysis
by chiral hydrogen-bonding donors, see:
<A NAME="RA48708ST-32A">32a </A>
Taylor MS.
Jacobsen EN.
Angew.
Chem. Int. Ed.
2006,
45:
1520
<A NAME="RA48708ST-32B">32b </A>
Marcelli T.
van Maarseveen JH.
Hiemstra H.
Angew. Chem. Int. Ed.
2006,
45:
7496
For a review, see:
<A NAME="RA48708ST-33A">33a </A>
Connon SJ.
Chem.-Eur. J.
2006,
12:
5418
For leading references, see:
<A NAME="RA48708ST-33B">33b </A>
Vakulya B.
Varga S.
Csámpai A.
Soós T.
Org. Lett.
2005,
7:
1967
<A NAME="RA48708ST-33C">33c </A>
McCooey SH.
Connon SJ.
Angew.
Chem. Int. Ed.
2005,
44:
6367
<A NAME="RA48708ST-34A">34a </A>
Sundberg RJ.
Indoles
Academic
Press;
San Diego:
1996.
p.175
<A NAME="RA48708ST-34B">34b </A>
Nicolaou KC.
Snyder SA.
Classics in Total Synthesis II
Wiley-VCH;
Weinheim:
2003.
For recent reviews on catalytic
asymmetric Friedel-Crafts reactions, see:
<A NAME="RA48708ST-35A">35a </A>
Bandini M.
Melloni A.
Umani-Ronchi A.
Angew.
Chem. Int. Ed.
2004,
43:
550
<A NAME="RA48708ST-35B">35b </A>
Jørgensen KA.
Synthesis
2003,
1117
For selected, recent examples,
see:
<A NAME="RA48708ST-36A">36a </A>
Jensen KB.
Thorhauge J.
Hazell RG.
Jørgensen KA.
Angew.
Chem. Int. Ed.
2001,
40:
160
<A NAME="RA48708ST-36B">36b </A>
Palomo C.
Oiarbide M.
Kardak BG.
Garcia JM.
Linden A.
J.
Am. Chem. Soc.
2005,
127:
4154
<A NAME="RA48708ST-36C">36c </A>
Evans DA.
Fandrick KR.
Song H.-J.
Scheidt KA.
Xu R.
J. Am. Chem. Soc.
2007,
129:
10029
<A NAME="RA48708ST-37A">37a </A>
Austin JF.
MacMillan DWC.
J. Am. Chem. Soc.
2002,
124:
1172
<A NAME="RA48708ST-37B">37b </A>
Austin JF.
Kim S.-G.
Sinz CJ.
Xiao W.-J.
MacMillan DWC.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
5482
<A NAME="RA48708ST-37C">37c </A>
Lee S.
MacMillan DWC.
J. Am. Chem. Soc.
2007,
129:
15438
<A NAME="RA48708ST-38">38 </A>
Bandini M.
Fagioli M.
Melchiorre P.
Umani-Ronchi A.
Tetrahedron Lett.
2003,
44:
5843
For organocatalytic indole alkylation
with enones promoted by an achiral amine, see:
<A NAME="RA48708ST-39A">39a </A>
Li D.-P.
Guo Y.-C.
Ding Y.
Xiao W.-J.
Chem. Commun.
2006,
799
In this report, an initial attempt to perform an asymmetric
version of the reaction using the MacMillan second generation imidazolidinone 7 afforded poor selectivity (28% ee). Recently,
a low selectivity (up to 29% ee) addition of indole to
chalcone promoted by d -camphorsulfonic
acid was reported, see:
<A NAME="RA48708ST-39B">39b </A>
Zhou W.
Xu L.-W.
Li L.
Yang L.
Xia C.-G.
Eur. J. Org.
Chem.
2006,
5225
See also:
<A NAME="RA48708ST-39C">39c </A>
Tang H.-Y.
Lu A.-D.
Zhou Z.-H.
Zhao G.-F.
He L.-N.
Tang C.-C.
Eur. J. Org. Chem.
2008,
1406
For a recent, Brønsted acid catalyzed asymmetric
F-C alkylation of indoles with unsaturated α-keto
esters, see:
<A NAME="RA48708ST-39D">39d </A>
Rueping M.
Nachtsheim BJ.
Moreth SA.
Bolte M.
Angew. Chem.
Int. Ed.
2008,
47:
593
<A NAME="RA48708ST-40A">40a </A>
Török B.
Abid M.
London G.
Esquibel J.
Török MS.
Mhadgut C.
Yan P.
Prakash GKS.
Angew. Chem. Int. Ed.
2005,
44:
3086
<A NAME="RA48708ST-40B">40b </A>
Herrera RP.
Sgarzani V.
Bernardi L.
Ricci A.
Angew. Chem.
Int. Ed.
2005,
44:
6576 .
In reference 12e the possibility that 9-amino-9-deoxy-epi -cinchona alkaloids can act as bifunctional
activators of both the unsaturated ketones and the nucleophiles
was advanced
<A NAME="RA48708ST-41A">41a </A>
Vanderwal CD.
Jacobsen EN.
J. Am. Chem. Soc.
2004,
126:
14724
<A NAME="RA48708ST-41B">41b </A>
Miyabe H.
Matsumura A.
Moriyama K.
Takemoto Y.
Org. Lett.
2004,
6:
4631
<A NAME="RA48708ST-41C">41c </A>
Bertelsen S.
Dinér P.
Johansen RL.
Jørgensen KA.
J.
Am. Chem. Soc.
2007,
129:
1536
<A NAME="RA48708ST-41D">41d </A>
Dinér P.
Nielsen M.
Bertelsen S.
Niess B.
Jørgensen KA.
Chem. Commun.
2007,
3646
<A NAME="RA48708ST-42A">42a </A>
Bode SE.
Wolberg M.
Müller M.
Synthesis
2006,
557
<A NAME="RA48708ST-42B">42b </A>
Evans DA.
Hoveyda AH.
J.
Org. Chem.
1990,
55:
5190
<A NAME="RA48708ST-43">43 </A>
Carreira EM.
Lee W.
Singer RA.
J.
Am. Chem. Soc.
1995,
117:
3649
<A NAME="RA48708ST-44A">44a </A>
Fraústo da Silva JR.
Williams RJP.
The Biological Chemistry of the Elements
Oxford
University Press;
New York:
2001.
<A NAME="RA48708ST-44B">44b </A>
Metzner P.
Thuillier A.
Sulfur
Reagents in Organic Synthesis
Academic Press;
New
York:
1994.
<A NAME="RA48708ST-44C">44c </A>
Nudelman A.
The Chemistry of Optically Active Sulfur Compounds
Gordon & Breach;
New
York:
1984.
<A NAME="RA48708ST-44D">44d </A>
Chatgilialoglu C.
Asmus K.-D.
Sulfur-Centered Reactive Intermediates in
Chemistry and Biology
Springer;
New
York:
1991.
<A NAME="RA48708ST-45">45 </A> For a comprehensive review on asymmetric
sulfa-Michael additions, see:
Enders D.
Lüttgen K.
Narine AA.
Synthesis
2007,
959
For selected examples, see:
<A NAME="RA48708ST-46A">46a </A>
Kanemasa S.
Oderaotoshi Y.
Wada E.
J.
Am. Chem. Soc.
1999,
121:
8675
For an organocatalytic asymmetric strategy, see:
<A NAME="RA48708ST-46B">46b </A>
Zu L.
Wang J.
Li H.
Xie H.
Jiang W.
Wang W.
J.
Am. Chem. Soc.
2007,
129:
1036
For organocatalytic asymmetric
strategies, see:
<A NAME="RA48708ST-47A">47a </A>
Hiemstra H.
Wynberg H.
J. Am. Chem. Soc.
1981,
103:
417
<A NAME="RA48708ST-47B">47b </A>
McDaid P.
Chen Y.
Deng L.
Angew.
Chem. Int. Ed.
2002,
41:
338
<A NAME="RA48708ST-48A">48a </A>
Brandau S.
Maerten E.
Jørgensen KA.
J. Am.
Chem. Soc.
2006,
128:
14986
<A NAME="RA48708ST-48B">48b </A>
Wang W.
Li H.
Wang J.
Zu L.
J. Am. Chem. Soc.
2006,
128:
10354
<A NAME="RA48708ST-48C">48c </A>
See also reference
17h.
<A NAME="RA48708ST-49A">49a </A>
Skarżewski J.
Zielińska-Blajet M.
Turowska-Tyrk I.
Tetrahedron:
Asymmetry
2001,
12:
1923
<A NAME="RA48708ST-49B">49b </A>
Li H.
Zu L.
Wang J.
Wang W.
Tetrahedron Lett.
2006,
47:
3145
<A NAME="RA48708ST-50">50 </A>
The results obtained when using 9-amino-9-deoxy-epi -hydroquinine (2 )
in combination with various acidic counterparts (TFA, PTSA, N -Boc-l -phenylalanine)
in the organocatalyzed SMA did not show any appreciable improvement
in terms of enantioselectivity, confirming the superior efficiency
of the catalyst salt 1 . Remarkably, consistent
with previous observations, use of the opposite enantiomeric counteranion
(N -Boc-l -phenylglycine) afforded
the same enantiomeric sulfa-Michael adduct with lower reactivity
and selectivity, illustrating a marked case of a matched/mismatched
catalyst-ion pair combination.
<A NAME="RA48708ST-51">51 </A>
Greene TW.
Wuts PGM.
Protective Groups in Organic Synthesis
3rd
ed.:
Wiley-VCH;
New York:
1999.
Chap.
6.
p.454
<A NAME="RA48708ST-52">52 </A> In the absence of an acidic counteranion,
the non-protonated 9-amino-9-deoxy-epi -hydroquinine
is still able to promote the sulfa-Michael addition, albeit with
lower reactivity, presumably by activating the nucleophilic component 36 through Brønsted-base catalysis;
however, the observed low optical purity (8% ee) together
with reversal in the stereochemistry supports an iminium ion activation
mode of catalysis when the chiral salt 1 is
employed. The iminium ion activation path is also corroborated by
the lower reactivity observed when more encumbered α-substituted
enones are employed. For similar mechanistic considerations on this type
of catalyst salt, see:
Wang X.
Reisinger CM.
List B.
J.
Am. Chem. Soc.
2008,
130:
6070
<A NAME="RA48708ST-53">53 </A>
Preliminary studies on conjugate additions
to (E )-4-phenyl-3-buten-2-one (11 ) promoted by catalyst salt 1 afforded encouraging results: aza-Michael
addition of N -(benzyl-oxycarbonyl)hydroxylamine:
96% ee; phospha-Michael addition of diphenylphosphine:
56% ee.
For reviews on organocatalytic
domino reactions, see:
<A NAME="RA48708ST-54A">54a </A>
Enders D.
Grondal C.
Hüttl MRM.
Angew. Chem. Int. Ed.
2007,
46:
1570
<A NAME="RA48708ST-54B">54b </A>
Guillena G.
Ramón DJ.
Yus M.
Tetrahedron:
Asymmetry
2007,
18:
693