Synlett 2002(7): 1043-1054
DOI: 10.1055/s-2002-32571
ACCOUNT
© Georg Thieme Verlag Stuttgart · New York

Coordination Compounds as Synthetic Building Blocks

Yitzhak Tor*
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, USA
Fax: +1(858)5345383; e-Mail: ytor@ucsd.edu;
Further Information

Publication History

Received 6 September 2001
Publication Date:
07 February 2007 (online)

Abstract

Transition metal complexes encompass a unique pool of building blocks with diverse stereochemical, electrochemical and photophysical features. Despite the current interest in employing polypyridine-containing coordination compounds for the fabrication of functional assemblies, their full potential as synthetic building blocks remains under-utilized. The account discusses the inspiration and rationale for advancing the synthetic chemistry of coordination compounds and presents recent developments where the complexity of these intriguing ‘inorganic’ building blocks is increased via ‘organic’ transformations.

1 Introduction

2 Why Metal-Containing Materials?

3 Why Develop the Organic Chemistry of Coordination
Compounds?

4 Selecting a Parent Ligand

5 Functionalizing 1,10-Phenanthroline

6 Coordination Compounds as Building Blocks

6.1 Cross-Coupling Reactions

6.2 Radical Transformations

6.3 Nucleophilic Aromatic Substitutions

7 Where do we go from here?

8 Summary

    References

  • 1a Kauffman GB. Inorganic Coordination Compounds   Heyden and Sons; London: 1981. 
  • 1b Coordination Chemistry A Century of Progress   Kauffman GB. ACS Symposium Series 565, American Chemical Society; Washington DC: 1994. 
  • 3a Reactions of Coordinated Ligands   Vol. 1:  Braterman PS. Plenum Press; New York: 1986. 
  • 3b Reactions of Coordinated Ligands   Vol. 2:  Braterman PS. Plenum Press; New York: 1989. 
  • 3c Constable EC. Metals and Ligand Reactivity, An Introduction to the Organic Chemistry of Metal Complexes   VCH; Weinheim: 1996. 
  • Selected references for metal-containing materials:
  • 4a Chen C.-T. Suslick KS. Coord. Chem. Rev.  1993,  128:  293 
  • 4b Manners I. Angew. Chem., Int. Ed. Engl.  1996,  35:  1602 
  • 4c Manners I. Chem. Britain  1996,  46 
  • 4d Pomogailo AD. Savost’yanov VS. Synthesis and Polymerization of Metal-Containing Monomers   CRC Press; Boca Raton: 1994. 
  • 6 Kahr B. Lovell S. Subramonym JA. Chirality  1998,  10:  66 
  • 7 Orna MV. Kozlowski AW. Baskinger A. Adams T. In Coordination Chemistry, A Century of Progress 1893-1993   Kauffman GB. ACS Symposium Series 565, American Chemical Society; Washington DC: 1994.  p.165 
  • 8a Wilcox DH. In Werner Centennial   Vol 62:  Kauffman GB. Adv. Chem. Ser., American Chemical Society; Washington DC: 1967.  p.86 
  • 8b

    The affinity of Werner to dyes is not so surprising. Werner, who was trained as an organic chemist, was born in Mulhouse (the center of the Alsatian dyeing industry) and early on interacted with Noetling, one of the great dye chemists of the time.

  • 9 See also: Wizinger R. Angew. Chem.  1950,  62:  203 
  • For recent review articles, see:
  • 10a Balzani V. Credi A. Venturi M. Coord. Chem. Rev.  1998,  171:  3 
  • 10b Ziessel R. Hissler M. El-ghayoury A. Harriman A. Coord. Chem. Rev.  1998,  180:  1251 
  • 10c For multiphoton, multielectron transfer processes in metal-containing polymers, see: Worl LA. Jones WE. Strouse GF. Younathan JN. Danielson E. Maxwell KA. Sykora M. Meyer TJ. Inorg. Chem.  1999,  38:  2705 
  • 11a Kalyanasundaram K. Coord. Chem. Rev.  1982,  46:  159 
  • 11b Moser JE. Bonnote P. Grätzel M. Coord. Chem. Rev.  1998,  171:  245 
  • 11c Sykora M. Maxwell KA. DeSimone JM. Meyer TJ. Proc. Natl. Acad. Sci. U.S.A  2000,  97:  7687 
  • 12 Campagna S. Denti G. Serroni S. Juris A. Venturi M. Ricevuto V. Balzani V. Chem.-Eur. J.  1995,  1:  211 
  • 13 Lehn J.-M. Supramolecular Chemistry: Concepts and Perspective   VCH; Weinheim: 1995. 
  • 14 Demas JN. DeGraff BA. Coord. Chem. Rev.  2001,  211:  317 
  • For excellent review articles, see:
  • 15a Juris A. Balzani V. Barigelletti F. Campagna S. Belser P. Von Zelewsky A. Coord. Chem. Rev.  1988,  84:  85 
  • 15b Sauvage J.-P. Collin J.-P. Chambron J.-C. Guillerez S. Coudret C. Balzani V. Barigelletti F. De Cola L. Flamigni L. Chem. Rev.  1994,  94:  993 
  • 15c Balzani V. Juris A. Venturi M. Campagna S. Serroni S. Chem. Rev.  1996,  96:  759 
  • 16a Barigelletti F. Flamigni L. Collin J.-P. Sauvage J.-P. Chem. Commun.  1997,  333 
  • 16b De Cola L. Belser P. Coord. Chem. Rev.  1998,  177:  301 
  • 16c Harriman A. Ziessel R. Coord. Chem. Rev.  1998,  171:  331 
  • 16d Barigelletti F. Flamigni L. Chem. Soc. Rev.  2000,  29:  1 
  • 16e Dixon IM. Collin J.-P. Sauvage JP. Flamigni L. Encinas S. Barigelletti F. Chem. Soc. Rev.  2000,  29:  385 
  • 17a Constable EC. Chem. Ind. (London)  1994,  56 
  • 17b Constable EC. Chem. Commun.  1997,  1073 
  • 17c Swiegers GF. Malefetse TJ. Chem.-Eur. J.  2001,  7:  3636 
  • 18 For a novel ‘complexes as metals and complexes as ligands’ strategy, see: Denti G. Campagna S. Serroni S. Ciano M. Balzani V. J. Am. Chem. Soc.  1992,  114:  2944 
  • 19 It is important to note that a significant amount of early work has been devoted to exploring the effect(s) of metal coordination on ligand reactivity without considerable attention to synthetic applications. See: Jones MM. Ligand Reactivity and Catalysis   Academic Press; New York: 1968. 
  • 20 Kaes C. Katz A. Hosseini MW. Chem. Rev.  2000,  100:  3553 
  • 21 Kröhnke F. Synthesis  1976,  1 
  • 22 Manske RHF. Kulka M. Org. React.  1953,  7:  59 
  • 23 For a review that summarizes the applications of phenanthroline ligands in bioorganic chemistry, molecular recognition and supramolecular chemistry, see: Sammes PG. Yahioglu G. Chem. Soc. Rev.  1994,  23:  327 
  • 24 Levis M. Lüning U. Müller M. Schmittel-Wöhrle C. Z. Naturforscher  1994,  49b:  675 
  • 25 Bosnich B. Acc. Chem. Res.  1969,  2:  266 
  • 26 For the multi-step syntheses of bromo derivatives of 1,10-phenanthroline using the Skraup reaction, see: Case FH. J. Org. Chem.  1951,  16:  941 
  • 28a For a monograph, see: Katritzky AR. Taylor R. Electrophilic Substitution of Heterocycles: Quantitative Aspects, In Advanced Heterocyclic Chemistry   Vol. 47:  Academic Press; San Diego: 1990. 
  • 28b For an early review, see: Graham B. In The Chemistry of Heterocyclic Compounds   Allen CFH. Interscience Publishers, Inc.; New York: 1958.  p.386 
  • 28c A direct bromination reaction that gives low yields of di-, tri- and tetrabrominated phenanthrolines and traces of the 3- and 5-bromo derivatives has been reported: Denes V. Chira R. J. Prakt. Chem.  1978,  320:  172 
  • 29 Kress TJ. Costantino SM. J. Heterocycl. Chem.  1973,  10:  409 
  • 30 Tzalis D. Tor Y. Failla S. Siegel JS. Tetrahedron Lett.  1995,  36:  3489 
  • 32 Connors PJ. Tzalis D. Dunnick AL. Tor Y. Inorg. Chem.  1998,  37:  1121 
  • 34 Toyota S. Woods CR. Siegel JS. Tetrahedron Lett.  1998,  39:  2697 
  • 35a Interestingly, Yamamoto has reported a bromination reaction of phen to 3,8-dibromo-1,10-phenanthroline in S2Cl2 and pyridine claiming the exclusive formation of the desired product. See: Saito Y. Koizumi T. Osakada K. Yamamoto T. Can. J. Chem.  1997,  75:  1336 
  • 35b Sauvage has reported an optimized procedure. See: Dietrich-Buchecker C. Jimenez MC. Sauvage J.-P. Tetrahedron Lett.  1999,  40:  3395 
  • For selected reviews, see:
  • 36a Sonogashira K. Comp. Org. Synth.  1991,  3:  521 
  • 36b Hegedus LS. In Transition Metals in the Synthesis of Complex Organic Molecules   University Science Books; Mill Valley: 1994.  p.65 
  • 36c Rossi R. Carpita A. Bellina F. Org. Prep. Proc. Int.  1995,  27:  127 
  • 37 Nicolaou KC. Sorensen EJ. Classics in Total Synthesis, Targets, Strategies, Methods   VCH; Weinheim: 1996.  p.565 
  • 38a Hartwig JF. Acc. Chem. Res.  1998,  31:  852 
  • 38b Hartwig JF. Angew. Chem. Int. Ed.  1998,  37:  2047 
  • 38c Yang BH. Buchwald SL. J. Organometal. Chem.  1999,  576:  125 
  • 38d Wolfe JP. Wagaw S. Marcoux JF. Buchwald SL. Acc. Chem. Res.  1998,  31:  805 
  • 39 Tzalis D. Tor Y. Chem. Commun.  1996,  1043 
  • 41 At about the same time, Collin’s group at Strasbourg reported the use of functionalized tpy-based RuII complexes as building blocks using Suzuki cross-coupling reactions. See: Chodorowski-Kimmes S. Beley M. Collin J.-P. Sauvage J.-P. Tetrahedron Lett.  1996,  37:  2963 
  • 42 Tzalis D. Tor Y. J. Am. Chem. Soc.  1997,  118:  852 
  • 43a Hurley DJ. Tor Y. J. Am. Chem. Soc.  1998,  120:  2194 
  • 43b Hurley DJ. Tor Y. J. Am. Chem. Soc.  2002,  124:  3749 
  • 44 Joshi HS. Tor Y. Chem. Commun.  2001,  549 
  • 45 Hurley DJ. Ph.D. Thesis   University of California; San Diego: 2000. 
  • 47 Glazer EC. Tor Y. Polymer Preprints  1999,  40:  513 
  • 48a Jasperse CP. Curran DP. Fevig TL. Chem. Rev.  1991,  91:  1237 
  • 48b Curran DP. Comp. Org. Synth.  1991,  4:  779 
  • 49 Porter NA. Giese B. Curran DP. Acc. Chem. Res.  1991,  24:  296 
  • 51a For an early review, see: Semmelhack MF. Comp. Org. Synth.  1991,  4:  517 
  • 51b For selected recent examples, see: Janetka JW. Rich DH. J. Am. Chem. Soc.  1997,  119:  6488 
  • 51c See also: Pearson AJ. Gontcharov AV. J. Org. Chem.  1998,  63:  152 
  • 51d Pearson AJ. Chelliah MV. J. Org. Chem.  1998,  63:  3087 
  • 51e Pearson AJ. Heo J.-N. Org. Lett.  2000,  2:  2987 
  • 51f Pearson AJ. Heo J.-N. Tetrahedron Lett.  2000,  41:  5991 
  • 51g Ghebreyessus KY. Nelson JH. Organometallics  2000,  19:  3387 
  • 52 For an early review, see: Constable EC. Polyhedron  1983,  2:  551 
  • 53 Richard AF. Ridd JH. Tobe ML. Chem. Ind. (London)  1963,  1727 
  • 54a Gillard RD. Hill REE. Maskill R. J. Chem. Soc. A  1970,  1447 
  • 54b

    See also ref. [3b] and ref. [19]

  • 55 Jackson K. Ridd JH. Tobe ML. J. Chem. Soc., Perkin Trans. 2  1979,  611 
  • 56a Constable EC. Inorg. Chim. Acta.  1984,  82:  53 
  • 56b Constable EC. Leese TA. Inorg. Chim. Acta.  1988,  146:  55 
  • 57 Constable EC. Cargill Thompson AMW. Harveson P. Macko L. Zehnder M. Chem- Eur. J.  1995,  1:  360 
  • 58a Constable EC. Inorg. Chim. Acta  1986,  117:  L33 
  • 58b See also: Constable EC. Phillips V. Chem. Commun.  1997,  827 
  • 59 Tzalis D. Tor Y. Angew. Chem., Int. Ed. Engl.  1997,  36:  2666 
  • 60 Miller J. Aromatic Nucleophilic Substitutions   Elsevier; New York: 1968. 
  • 61 Hurley DJ. Roppe JR. Tor Y. Chem. Commun.  1999,  993 
  • 62 Hurley DJ. Tor Y. Tetrahedron Lett.  2001,  42:  7217 
  • 63a Erkkila KE. Odom DT. Barton JK. Chem. Rev.  1999,  99:  2777 
  • 63b Chambron J.-C. Sauvage J.-P. Amouyal E. Koffi P. Nouv. J. Chim.  1985,  9:  527 
  • 63c For the original synthesis of dppz, see: Dickeson JE. Summers LA. Aust. J. Chem.  1970,  23:  1023 
  • 65 Rudi A. Benayahu Y. Goldberg I. Kashman Y. Tetrahedron Lett.  1988,  29:  6655 
  • 66 Rudi A. Kashman Y. Gut D. Lellouche F. Kol M. Chem. Commun.  1997,  17 
  • 67 Luedtke NW. Hwang JS. Glazer EC. Gut D. Kol M. Tor Y. ChemBioChem, in press
2

The terms ‘organic’ and ‘inorganic’ are placed in quotation marks for obvious reasons. Coordination compounds, where an ‘inorganic’ ion is surrounded by ‘organic’ ligands represent the ultimate hybrid of disciplines.

5

Ref. [1a] , p. 56.

27

The final cyclization step is a Skraup reaction between 8-amino-3-bromoquinoline and a protected hydrate of bromoacrolein. It affords 3,8-dibromo-1,10-phenanthroline in 4.4% yield.

31

Typical yields are 25-35% for 1 and 20-25% for 2. Altering the reaction conditions results in changes in the ratio between the mono and dibromo derivatives, as well as the amounts of higher brominated side products.

33

Some of these interesting brominated phenanthrolines were also synthesized by Case. See ref. [26]

40

For example, the reaction of 4 with 4-ethynyltoluene gave 8 in 91% isolated yield after 1 h at r.t.

46

Weizman, H.; Tor, Y. unpublished results.

50

Hurley, D. J.; Tor, Y. unpublished results.

64

Glazer, E. C.; Tor, Y. submitted.