RSS-Feed abonnieren
DOI: 10.1055/s-0043-1775494
Design, Synthesis, and In Vitro Cytotoxicity Studies of 1H-Benzimidazol-2-yl–Enaminone Hybrids as Tubulin Polymerization Inhibitors
The authors are grateful to the Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India, New Delhi, for the award of a NIPER fellowship.

Abstract
Tubulin polymerization inhibitors play a pivotal role in cancer therapy due to their ability to disrupt microtubule dynamics, which are essential for mitotic cell division. Taking this into consideration, a series of novel 1H-benzimidazol-2-yl–enaminone hybrids were designed and synthesized to explore their potential as tubulin polymerization inhibitors. In vitro assays demonstrated that (2E)-1-(1-ethyl-1H-benzimidazol-2-yl)-3-pyrrolidin-1-ylprop-2-en-1-one displayed significant cytotoxic effects against various cancer cell lines, with a low IC50 value of 5.18 ± 1.07 μM for the HCT-116 cell line, compared with that of the standard drug paclitaxel (20.32 ± 1.18 μM). This hybrid selectively targeted cancer cells over nonmalignant cells, inducing apoptosis. Our findings highlighted the potential of this derivative to inhibit the G2/M phase of the cell cycle. The compound also demonstrated tubulin inhibition, establishing itself as a promising lead candidate for anticancer therapy and paving the way for the development of more-effective tubulin-targeting agents in drug discovery.
Key words
tubulin polymerization inhibitors - anticancer drugs - benzimidazoles - enaminones - cytotoxicity - apoptosisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775494.
- Supporting Information
Publikationsverlauf
Eingereicht: 15. Februar 2025
Angenommen nach Revision: 28. April 2025
Artikel online veröffentlicht:
03. Juni 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Siegel RL, Miller KD, Fuchs HE, Jemal A. Ca-Cancer J. Clin. 2022; 72: 7
- 2 Fouad YA, Aanei C. Am. J. Cancer Res. 2017; 7: 1016
- 3 Kumar NP, Sharma P, Kumari SS, Brahma U, Nekkanti S, Shankaraiah N, Kamal A. Eur. J. Med. Chem. 2017; 140: 128
- 4 Sana S, Reddy VG, Srinivasa Reddy T, Tokala R, Kumar R, Bhargava SK, Shankaraiah N. Bioorg. Chem. 2021; 110: 104765
- 5 Sharma P, Reddy TS, Kumar NP, Senwar KR, Bhargava SK, Shankaraiah N. Eur. J. Med. Chem. 2017; 138: 234
- 6 Sharma P, Srinivasa Reddy T, Thummuri D, Senwar KR, Praveen Kumar N, Naidu VG. M, Bhargava SK, Shankaraiah N. Eur. J. Med. Chem. 2016; 124: 608
- 7 Akhtar MJ, Yar MS, Sharma VK, Khan AA, Ali Z, Haider MD. R, Pathak A. Curr. Med. Chem. 2019; 27: 5970
- 8 Noor A, Qazi NG, Nadeem H, Khan A.-u, Paracha RZ, Ali F, Saeed A. Chem. Cent. J. 2017; 11: 85
- 9 Wang XJ, Xi MY, Fu JH, Zhang FR, Cheng GF, Yin DL, You QD. Chin. Chem. Lett. 2012; 23: 707
- 10 Kanwal A, Ahmad M, Aslam S, Naqvi SA. R, Saif MJ. Pharm. Chem. J. 2019; 53: 179
- 11 Iqbal H, Verma AK, Yadav P, Alam S, Shafiq M, Mishra D, Khan F, Hanif K, Negi AS, Chanda D. Front. Pharmacol. 2021; 12: 611109
- 12 Veerasamy R, Roy A, Karunakaran R, Rajak H. Pharmaceuticals 2021; 14: 663
- 13 Yadav G, Ganguly S. Eur. J. Med. Chem. 2015; 97: 419
- 14 Hernández-López H, Tejada-Rodríguez CJ, Leyva-Ramos S. Mini Rev. Med. Chem. 2022; 22: 1268
- 15 Amaye IJ, Haywood RD, Mandzo EM, Wirick JJ, Jackson-Ayotunde PL. Tetrahedron 2021; 83: 131984
- 16a Ilhan S, Atmaca H, Yilmaz ES, Korkmaz E, Zora M. J. Biochem. Mol. Toxicol. 2023; 37: e23299
- 16b Laxmikeshav K, Rahman Z, Mahale A, Valapil DG, Sharma P, George J, Phanindranath R, Dandekar MP, Kulkarni OP, Nagesh N, Shankaraiah N. Bioorg. Med. Chem. Lett. 2023; 96: 129494
- 16c Laxmikeshav K, Himaja A, Shankaraiah N. J. Mol. Struct. 2022; 1253: 132251
- 17 Periasamy M, Mohan L, Satyanarayana I, Reddy PO. J. Org. Chem. 2018; 83: 267
- 18a Roos WP, Kaina B. Trends Mol. Med. 2006; 12: 440
- 18b Zaidieh T, Smith JR, Ball KE, An Q. BMC Cancer 2019; 19: 1224
- 19 Chazotte B. Cold Spring Harbor Protoc. 2011;
- 20 Shoemaker RH, Wolpert-DeFilippes MK, Kern DH, Lieber MM, Makuch RW, Melnick NR, Miller WT, Salmon SE, Simon RM, Venditti JM, Von Hoff DD. Cancer Res. 1985; 45: 2145
- 21 Eccles SA, Box C, Court W. Biotechnol. Annu. Rev. 2005; 11: 391
- 22a Rafehi H, Orlowski C, Georgiadis GT, Ververis K, El-Osta A, Karagiannis TC. J. Visualized Exp. 2011; 49: 2573
- 22b Eray M, Mättö M, Kaartinen M, Andersson LC, Pelkonen J. Cytometry 2001; 43: 134
- 23a Jadala C, Satish M, Anchi P, Tokala R, Lakshmi UJ, Reddy VG, Shankariah N, Godugu C, Kamal A. ChemMedChem 2019; 14: 2052
- 23b Sharma P, Pedapati S, Nekkanti S, Srinivasulu V, Kumar N, Shankaraiah N, Kamal A. Lett. Drug Des. Discovery 2016; 13: 335
- 23c Tokala R, Bale S, Janrao IP, Vennela A, Kumar NP, Senwar KR, Godugu C, Shankaraiah N. Bioorg. Med. Chem. Lett. 2018; 28: 1919
- 24 Kode J, Kovvuri J, Nagaraju B, Jadhav S, Barkume M, Sen S, Kasinathan NK, Chaudhari P, Mohanty BS, Gour J, Sigalapalli DK, Kumar CG, Pradhan T, Banerjee M, Kamal A. Bioorg. Chem. 2020; 105: 104447
- 25a J. Eberhardt, D. Santos-Martins, A. F. Tillack, and S. Forli. 2021. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling.
- 25b Prota, A.E., Danel, F., Bachmann, F., Bargsten, K., Buey, R.M., Pohlmann, J., Reinelt, S., Lane, H. and Steinmetz, M.O., The novel microtubule-destabilizing drug BAL27862 binds to the colchicine site of tubulin with distinct effects on microtubule organization. J. Mol. Biol., 2014, 426(8), 1848-1860.
- 25c Daina, A., Michielin, O. and Zoete, V., SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
- 26 Benzimidazol-2-yl Enaminone Derivatives 8a–l; General Procedure Compound 6a or 6b (1 mmol) was treated with the appropriate substituted secondary amine 7a–g (0.5 mmol) in the presence of Ag2CO3 (0.15 mmol) in H2O (5 mL) at 40 °C for 3–4 h under air. When the reaction was complete, the mixture was filtered under vacuum, and the filtrate was extracted with EtOAc. The organic layer was concentrated, and the resulting crude product was purified by column chromatography [silica gel (100–200 mesh)]. (2E)-1-(1-Ethyl-1H-benzimidazol-2-yl)-3-morpholin-4-ylprop-2-en-1-one (8a) Yellow solid; yield: 85%; mp 163–165 °C. FTIR: 1934, 1634, 1552, 1443, 1356, 1235, 1173, 888, 747 cm–1. 1H NMR (500 MHz, DMSO-d 6): δ = 7.88 (d, J = 7.9 Hz, 1 H), 7.82 (d, J = 12.8 Hz, 1 H), 7.46 (d, J = 7.9 Hz, 1 H), 7.41–7.33 (m, 2 H), 6.62 (d, J = 11.2 Hz, 1 H), 4.75 (q, J = 7.1 Hz, 2 H), 3.81–3.74 (m, 4 H), 3.51–3.49 (m, 4 H), 1.49 (t, J = 7.1 Hz, 3 H). 13C NMR (125 MHz, DMSO-d 6): δ = 180.4, 153.2, 148.8, 141.8, 136.0, 124.5, 123.1, 120.8, 111.3, 93.9, 66.8, 65.7, 53.2, 46.2, 16.0. HRMS (ESI): m/z [M + H]+ calcd for C16H20N3O2: 286.1556; found: 286.1558.