Subscribe to RSS
DOI: 10.1055/s-0043-1775475
Ni- and Cu-Promoted Fixation Reactions of Carbon Dioxide with Unsaturated Hydrocarbons
This work was supported by a Grant-in-Aid for Scientific Research (B) (JP 22H02080) from the Japan Society for the Promotion of Science (JSPS).

Abstract
Carbon dioxide is a significant greenhouse gas and reducing carbon emissions to mitigate global warming poses a major challenge. The efficient utilization of carbon dioxide as a carbon resource requires the development of effective and straightforward synthetic strategies for C–C bond transformations. Recent studies have focused on transition-metal-catalyzed coupling reactions of carbon dioxide with soft nucleophiles such as alkynes, conjugated dienes, and various unsaturated hydrocarbons, demonstrating the formation of unsaturated carboxylic acids. This article describes carbon dioxide fixation reactions with unsaturated hydrocarbons promoted by Ni and Cu catalysts that we have recently developed. Notably, these reactions feature highly regio- and stereoselective C–C bond formation facilitated by key intermediates involving organometalloids.
Key words
nickel - copper - carbon dioxide - organozinc - organoaluminum - organoboranes - dienes - alkynesPublication History
Received: 02 February 2025
Accepted after revision: 25 March 2025
Article published online:
16 May 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Yuan P, Zhu C, Meng Q. Chin. J. Org. Chem. 2024; 44: 2997
- 1b Xiong W, Tan X, Liu H, Zhu B, Zhao J, Li J, Qi C, Jiang H. Sci. China: Chem. 2024; 67: 841
- 1c Cauwenbergh R, Goyal V, Maiti R, Natte K, Das S. Chem. Soc. Rev. 2022; 51: 9371
- 1d Ran C.-K, Liao L.-L, Gao T.-Y, Gui Y.-Y, Yu D.-G. Curr. Opin. Green Sustainable Chem. 2021; 32: 100525
- 1e Bertuzzi G, Cerveri A, Lombardi L, Bandini M. Chin. J. Chem. 2021; 39: 3116
- 1f Das S. CO2 as a Building Block in Organic Synthesis. Wiley-VCH; Weinheim: 2020
- 1g Xiong W, Cheng R, Wu B, Wu W, Qi C, Jiang H. Sci. China: Chem. 2020; 63: 331
- 1h Yan S.-S, Fu Q, Liao L.-L, Sun G.-Q, Ye J.-H, Gong L, Bo-Xue Y.-Z, Yu D.-G. z. Coord. Chem. Rev. 2018; 374: 439
- 1i Wang S, Du G, Xi C. Org. Biomol. Chem. 2016; 14: 3666
- 2 Gilman H, Kirby HR. Org. Synth. 1925; 5: 75
- 3 Ito T, Yamamoto A. J. Synth. Org. Chem., Jpn. 1976; 34: 308
- 4 Aresta M, Nobile FC, Albano GV, Fomi E, Manassero M. J. Chem. Soc., Chem. Commun. 1975; 636
- 5 Takimoto M, Mori M. J. Am. Chem. Soc. 2001; 123: 2895
- 6 Heimbach P, Kluth J, Schenkluhn H, Weimann B. Angew. Chem., Int. Ed. Engl. 1980; 19: 570
- 7 Takimoto M, Shimizu K, Mori M. Org. Lett. 2001; 3: 3345
- 8 Shimizu K, Takimoto M, Mori M. Org. Lett. 2003; 5: 2323
- 9 Shimizu K, Takimoto M, Sato Y, Mori M. Org. Lett. 2005; 7: 195
- 10 Cao T, Ma S. Org. Lett. 2016; 18: 1510
- 11 Mori Y, Mori T, Onodera G, Kimura M. Synthesis 2014; 46: 2287
- 12a Wilke G. Angew. Chem., Int. Ed. Engl. 1988; 27: 185
- 12b Baker R, Crimmin MJ. J. Chem. Soc., Perkin Trans. 1 1979; 1264
- 12c Akutagawa S. Bull. Chem. Soc. Jpn. 1976; 49: 3646
- 12d Baker R. Chem. Rev. 1973; 73: 487
- 13a Terao J, Oda A, Ikumi A, Nakamura A, Kuniyasu H, Kambe N. Angew. Chem. Int. Ed. 2003; 42: 3412
- 13b Takimoto M, Mori M. J. Am. Chem. Soc. 2002; 124: 10008
- 13c Benn R, Büssemeier B, Holle S, Jolly PW, Mynott R, Tkatchenko I, Wilke G. J. Organomet. Chem. 1985; 279: 63
- 14 Tamaru Y, Goto S, Tanaka A, Shimizu M, Kimura M. Angew. Chem., Int. Ed. Engl. 1996; 35: 878
- 15a Correa A, Martin R. J. Am. Chem. Soc. 2009; 131: 15974
- 15b Fujihara T, Nogi K, Xu T, Terao J, Tsuji Y. J. Am. Chem. Soc. 2012; 134: 9106
- 16a León T, Correa A, Martin R. J. Am. Chem. Soc. 2013; 135: 1221
- 16b Correa A, León T, Martin R. J. Am. Chem. Soc. 2014; 136: 1062
- 16c Moragas T, Gaydou M, Martin R. Angew. Chem. Int. Ed. 2016; 55: 5053
- 17 Nogi K, Fujihara T, Terao J, Tsuji Y. Chem. Commun. 2014; 50: 13052
- 18 It has been reported that CO2 promotes propargylic alcohols to undergo oxidative addition toward Ni(0) catalyst followed by reductive carboxylation to form β,γ-butenoic acids, see: Chen Y.-G, Shuai B, Ma C, Zhang X.-J, Fang P, Me T.-S. Org. Lett. 2017; 19: 2969
- 19 Yang Y, Lee J.-W. Chem. Sci. 2019; 10: 3905
- 20a Moragas T, Cornella J, Martin R. J. Am. Chem. Soc. 2014; 136: 17702
- 20b Lang BS, Locascio MT, Tunge AJ. Org. Lett. 2014; 16: 4308
- 20c Mita T, Higuchi Y, Sato Y. Chem. Eur. J. 2015; 21: 16391
- 20d Gemmeren M, Börjesson M, Tortajada A, Sun S.-Z, Okura K, Martin R. Angew. Chem. Int. Ed. 2017; 56: 6558
- 20e Ang JW. N, Oliverira AC. J, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 12842
- 21a Álvarez R, de Lera RA, Aurrecoechea MJ, Durana A. Organometallics 2007; 26: 2799
- 21b Cyklinsky M, Botuha C, Chemla F, Ferreira F, Pérez-Luna A. Synlett 2011; 2681
- 21c Hirashita T, Suzuki Y, Tsuji H, Sato Y, Naito K, Araki S. Eur. J. Org. Chem. 2012; 5668
- 21d Shao BX, Zhang Z, Li HQ, Zhao GZ. Org. Biomol. Chem. 2018; 16: 4797
- 22 Deprotonation of trimethylsilylpropyne with n-BuLi followed by the addition of ZnCl2 under CO2 provided the desired product. This result seems to suggest that allenyl zinc species can serve as an active intermediate V.
- 23 Luo Y, Chan B, Fukuda T, Onodera G, Kimura M. Synlett 2021; 32: 1551
- 24a Ely RJ, Morken JP. J. Am. Chem. Soc. 2010; 132: 2534
- 24b Gao F, Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 10961
- 24c Eisch JJ, Sexsmith SR, Fichter KC. J. Organomet. Chem. 1997; 527: 301
- 24d Eisch JJ, Ma X, Singh M, Wilke G. J. Organomet. Chem. 1990; 382: 273
- 25a Gui Y.-Y, Chen X.-W, Mo X.-Y, Yue J.-P, Yuan R, Liu Y, Liao L.-L, Ye J.-H, Yu D.-G. J. Am. Chem. Soc. 2024; 146: 2919
- 25b Chen X.-W, Yue J.-P, Wang K, Gui Y.-Y, Niu Y.-N, Liu J, Ran C.-K, Kong W, Zhou W.-J, Yu D.-G. Angew. Chem. Int. Ed. 2021; 60: 14068
- 25c Chen X.-W, Zhu L, Gui Y.-Y, Jing K, Jiang Y.-X, Bo Z.-Y, Lan Y, Li J, Yu D.-G. J. Am. Chem. Soc. 2019; 141: 18825
- 25d Gui Y.-Y, Hu N, Chen X.-W, Liao L.-L, Ju T, Ye J.-H, Zhang Z, Li J, Yu D.-G. J. Am. Chem. Soc. 2017; 139: 17011
- 25e Duong HA, Huleatt PB, Tan Q.-W, Shuying EL. Org. Lett. 2013; 15: 4034
- 25f Wu J, Hazari N. Chem. Commun. 2011; 47: 1069
- 25g Johnson MT, Johansson R, Kondrashov MV, Steyl G, Ahlquist MS. G, Roodt A, Wendt OF. Organometallics 2010; 29: 3521
- 25h Takaya J, Iwasawa N. J. Am. Chem. Soc. 2008; 130: 15254
- 26a Mori Y, Kawabata T, Onodera G, Kimura M. Synthesis 2016; 48: 2385
- 26b Mori Y, Onodera G, Kimura M. Chem. Lett. 2014; 43: 97
- 26c Mori T, Akioka Y, Onodera G, Kimura M. Molecules 2014; 19: 9288
- 26d Nakamura T, Mori T, Togawa M, Kimura M. Heterocycles 2012; 84: 339
- 26e Kimura M, Togawa M, Tatsuyama Y, Matsufuji K. Tetrahedron Lett. 2009; 50: 3982
- 26f Kimura M, Tatsuyama Y, Kojima K, Tamaru Y. Org. Lett. 2007; 9: 1871
- 26g Kimura M, Kojima K, Tatsuyama Y, Tamaru Y. J. Am. Chem. Soc. 2006; 128: 6332
- 26h Kimura M, Ezoe A, Mori M, Tamaru Y. J. Am. Chem. Soc. 2005; 127: 201
- 26i Kimura M, Ezoe A, Mori M, Iwata K, Tamaru Y. J. Am. Chem. Soc. 2006; 128: 8559
- 26j Kimura M, Fujimatsu H, Ezoe A, Shibata K, Shimizu M, Matsumoto S, Tamaru Y. Angew. Chem. Int. Ed. 1999; 38: 397
- 26k Kimura M, Ezoe A, Shibata K, Tamaru Y. J. Am. Chem. Soc. 1998; 120: 4033
- 27a Ng S.-S, Jamison TF. J. Am. Chem. Soc. 2005; 127: 14194
- 27b Ho C.-Y, Ng S.-S, Jamison TF. J. Am. Chem. Soc. 2006; 128: 5362
- 27c Ng S.-S, Ho C.-Y, Jamison TF. J. Am. Chem. Soc. 2006; 128: 11513
- 28 Michigami K, Mita T, Sato Y. J. Am. Chem. Soc. 2017; 139: 6094
- 29 Mori Y, Shigeno C, Luo Y, Chan B, Onodera G, Kimura M. Synlett 2018, 29: 742
- 30 Acetone is generated from a mixture of CO2 and trimethylaluminum. The ketone formed in situ would be subsequently consumed by Ni-catalyzed oxidative cyclization with alkenes promoted by trimethylaluminum. It has also been reported that trialkylaluminum coupled with CO2 to afford trialkylcarbinols, see: Yur’ev VP, Kuchin AV, Tolstikov GA. Russ. Chem. Bull. 1974; 23: 817
- 31 Hayashi Y, Hoshimoto Y, Kumar R, Ohashi M, Ogoshi S. Chem. Lett. 2017; 46: 1096
- 32 Ogoshi S, Ueta M, Arai T, Kurosawa H. J. Am. Chem. Soc. 2005; 127: 12810
- 33 Fukushima M, Takushima D, Satomura H, Onodera G, Kimura M. Chem. Eur. J. 2012; 18: 8019
- 34 Kuge K, Luo Y, Fujita Y, Mori Y, Onodera G, Kimura M. Org. Lett. 2017; 19: 854
- 35a Miyaura N, Yoshinari T, Itoh M, Suzuki A. Tetrahedron Lett. 1974; 2961
- 35b Binger P, Köster R. Tetrahedron Lett. 1965; 1901
- 36a Kehr G, Erker G. Chem. Sci. 2016; 7: 56
- 36b Suzuki A, Miyaura N, Abiko S, Itoh M, Midland MM, Sinclair JA, Brown HC. J. Org. Chem. 1986; 51: 4507
- 36c Brown HC, Molander GA. J. Org. Chem. 1986; 51: 4512
- 36d Brown HC, Wang KK. J. Org. Chem. 1986; 51: 4514
- 36e Brown HC, Basavaiah D, Bhat NG. J. Org. Chem. 1986; 51: 4518
- 36f Sikorski JA, Bhat NG, Cole TE, Wang KK, Brown HC. J. Org. Chem. 1986; 51: 4521
- 37a Kimura M, Ezoe A, Tanaka S, Tamaru Y. Angew. Chem. Int. Ed. 2001; 40: 3600
- 37b Kimura M, Miyachi A, Kojima K, Tanaka S, Tamaru Y. J. Am. Chem. Soc. 2004; 126: 14360
- 37c Tamaru Y, Kimura M. Org. Synth. 2006; 83: 88
- 38a Mori T, Nakamura T, Kimura M. Org. Lett. 2011; 13: 2266
- 38b Mori T, Nakamura T, Onodera G, Kimura M. Synthesis 2012; 44: 2333
- 39a Pμpai I, Schubert G, Mayer I, Besenyei G, Aresta M. Organometallics 2004; 23: 5252
- 39b Sakakura T, Choi JC, Yasuda H. Chem. Rev. 2007; 107: 2365
- 39c Aresta M. Carbon Dioxide as Chemical Feedstock . Wiley- VCH; Weinheim: 2010
- 39d Behr A, Henze G. Green Chem. 2011; 13: 25
- 39e Nakano R, Ito S, Nozaki K. Nat. Chem. 2014; 6: 325
- 39f Mita T, Tanaka H, Higuchi Y, Sato Y. Org. Lett. 2016; 18: 2754
- 39g Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W. Chem. Rev. 2018; 118: 434
- 39h Tortajada A, Julia-Hernańdez F, Börjesson M, Moragas T, Martin R. Angew. Chem. Int. Ed. 2018; 57: 15948
- 39i Yamahira T, Onodera G, Fukuda T, Kimura M. Chem. Lett. 2021; 50: 853
- 40a Oblinger E, Montgomery J. J. Am. Chem. Soc. 1997; 119: 9065
- 40b Ikeda S. Angew. Chem. Int. Ed. 2003; 42: 5120
- 40c Mori T, Akioka Y, Kawahara H, Ninokata R, Onodera G, Kimura M. Angew. Chem. Int. Ed. 2014; 53: 10434
- 40d Mori T, Takeuchi Y, Hojo M. Tetrahedron Lett. 2020; 61: 151518
- 41 Murakami M, Ashida S, Matsuda T. J. Am. Chem. Soc. 2005; 127: 6932
- 42a Saito N, Sugimura Y, Sato Y. Org. Lett. 2010; 12: 3439
- 42b Hayashi Y, Hoshimoto Y, Kumer R, Ohashi M, Ogoshi S. Chem. Commun. 2016; 52: 6237
- 42c Ogoshi S. Bull. Chem. Soc. Jpn. 2017; 90: 1401
- 42d Ogoshi S. Nickel Catalysis in Organic Synthesis . Wiley-VCH; Weinheim: 2019
- 43 Kimura M, Mori M, Mukai N, Kojima K, Tamaru Y. Chem. Commun. 2006; 2813
- 44a Ikeda S, Cui D.-M, Sato Y. J. Org. Chem. 1994; 59: 6877
- 44b Cui D.-M, Tsuzuki T, Miyake K, Ikeda S, Sato Y. Tetrahedron 1998; 54: 1063
- 44c Ikeda S, Miyashita H, Sato Y. Organometallics 1998; 17: 4316
- 44d Ikeda S, Obara H, Tsuchida E, Shirai N, Odashima K. Organometallics 2008; 27: 1645
- 45a Sato Y, Takimoto M, Hayashi K, Katsumata T, Takagi K, Mori M. J. Am. Chem. Soc. 1994; 116: 9771
- 45b Sato Y, Takimoto M, Mori M. J. Am. Chem. Soc. 2000; 122: 1624
- 46 Kurahashi T, Matsubara S. Acc. Chem. Res. 2015; 48: 1703
- 47a Takimoto M, Kawamura M, Mori M. Org. Lett. 2003; 5: 2599
- 47b Nakano K, Kamada T, Nozaki K. Angew. Chem. Int. Ed. 2006; 45: 7274
- 47c Correa A, Martin R. Angew. Chem. Int. Ed. 2009; 48: 6201
- 47d Tanaka R, Yamashita M, Nozaki K. J. Am. Chem. Soc. 2009; 131: 14168
- 47e Huang K, Sun CL, Shi Z.-J. Chem. Soc. Rev. 2011; 40: 2435
- 47f Takimoto M, Kawamura M, Mori M, Sato Y. Synlett 2011; 1423
- 47g Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE. Angew. Chem. Int. Ed. 2011; 50: 8510
- 47h Finn C, Schnittger S, Yellowlees JL, Love BJ. Chem. Commun. 2012; 48: 1392
- 47i Saito N, Sugimura Y, Sato Y. Synlett 2014; 25: 736
- 47j See ref. 16b.
- 47k Liu Y, Cornella J, Martin R. J. Am. Chem. Soc. 2014; 136: 11212
- 47l Saito N, Sun Z, Sato Y. Chem. Asian J. 2015; 10: 1170
- 47m Wang X, Liu Y, Martin R. J. Am. Chem. Soc. 2015; 137: 6476
- 47n Börjesson M, Moragasa T, Martin R. J. Am. Chem. Soc. 2016; 138: 7504
- 47o Yeung C. Angew. Chem. Int. Ed. 2019; 58: 5492
- 47p Burkart MD, Hazari N, Tway CL, Zeitler EL. ACS Catal. 2019; 9: 7937
- 47q Tsai H.-J, Su Y.-C, Liu G.-L, Ko B.-T. Organometallics 2022; 41: 594
- 48a Mizuno T, Oonishi Y, Takimoto M, Sato Y. Eur. J. Org. Chem. 2011; 14: 2606
- 48b Wang X, Nakajima M, Martin R. J. Am. Chem. Soc. 2015; 137: 8924
- 48c Ninokata R, Yamahira T, Onodera G, Kimura M. Angew. Chem. Int. Ed. 2017; 56: 208
- 48d Tortajada A, Ninokata R, Martin R. J. Am. Chem. Soc. 2018; 140: 2050
- 48e Ma C, Zhao C.-Q, Xu X.-T, Li Z.-M, Wang X.-Y, Zhang K, Mei T.-S. Org. Lett. 2019; 21: 2464
- 48f Wang L, He S, Wang L, Lei Y, Meng X, Xiao F.-S. ACS Catal. 2019; 9: 11335
- 48g Vogt C, Monai M, Sterk BE, Palle J, Melcherts ME. A, Zijlstra B, Groeneveld E, Berben HP, Boereboom MJ, Hensen MJ. E, Meirer F, Filot WA. I, Weckhuysen MB. Nat. Commun. 2019; 10: 5330
- 48h Somerville JR, Odena C, Obst FM, Hazari N, Hopmann HK, Martin R. J. Am. Chem. Soc. 2020; 142: 10936
For 1,1-carboboration of alkynylborates, see: