Subscribe to RSS
DOI: 10.1055/s-0043-1775473
Cobalt-Catalyzed C–H Bond Functionalization: a Personal Account
This work was supported by the Recovery and Resilience Facility academic career grant (No. 04/OSI/ZG, RRF project No. 5.2.1.1.i.0/2/24/I/CFLA/001). A. C. gratefully acknowledges support from the Recovery and Resilience Facility doctoral career grant (No. 22/OSI/DG, RRF project No. 5.2.1.1.i.0/2/24/I/CFLA/001).

Abstract
The development of green and sustainable synthetic methods is of great interest worldwide. Today the direct activation and functionalization of relatively inert C–H bonds is one of the top fields in organic chemistry, and this strategy already represents a sustainable and more environmentally friendly approach due to its atom and step economy compared to alternative C–C and C–Het bond-forming processes. Much progress has been made in developing C–H bond functionalization methods using noble-metal catalysts. Cobalt has recently emerged as an attractive alternative because it is less toxic, cheaper, and more abundant than noble metals. This Account summarizes the cobalt-catalyzed C–H bond-functionalization methods that have been developed during the corresponding author’s research career.
1 Introduction and Background
2 C–H Bond Functionalization of 8-Aminoquinoline Benzamides
3 Mechanistic Investigations of Cobalt-Catalyzed, Aminoquinoline-Directed C–H Bond Functionalization of Benzamides
4 C(sp2)–H Bond Functionalization of 8-Aminoquinoline Phosphinamides
5 C(sp2)–H Bond Carbonylation of 8-Aminoquinoline Sulfonamides
6 C(sp2)–H Bond Functionalization of Benzoic Acids
7 C(sp2)–H Bond Functionalization of Phenylglycine Derivatives
8 C(sp2)–H Bond Functionalization of Phenylalanine Derivatives
9 Conclusion
Key words
amino acid - annulations - carbonylation - C–H bond activation - cobalt catalysis - imination - intramolecular amidationPublication History
Received: 14 February 2025
Accepted after revision: 21 March 2025
Article published online:
29 April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 1b Ackermann L. Chem. Rev. 2011; 111: 1315
- 1c Baudoin O. Chem. Soc. Rev. 2011; 40: 4902
- 1d He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
- 1e Hartwig JF. J. Am. Chem. Soc. 2016; 138: 2
- 2a Baudoin O. Angew. Chem. Int. Ed. 2020; 59: 17798
- 2b Abrams DJ, Provencher PA, Sorensen EJ. Chem. Soc. Rev. 2018; 47: 8925
- 2c Guillemard L, Kaplaneris N, Ackermann L, Johansson MJ. Nat. Rev. Chem. 2021; 5: 522
- 2d Jana R, Begam HM, Dinda E. Chem. Commun. 2021; 57: 10842
- 3a Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
- 3b Mo J, Messinis AM, Li J, Warratz S, Ackermann L. Acc. Chem. Res. 2024; 57: 10
- 3c Khake SM, Chatani N. Chem 2020; 6: 1056
- 3d Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
- 3e Guo X.-X, Gu D.-W, Wu Z, Zhang W. Chem. Rev. 2015; 115: 1622
- 3f Liu W, Ackermann L. ACS Catal. 2016; 6: 3743
- 4a Lukasevics L, Cizikovs A, Grigorjeva L. Chem. Commun. 2021; 57: 10827
- 4b Mei R, Dhawa U, Samanta RC, Ma W, Wencel-Delord J, Ackermann L. ChemSusChem 2020; 13: 3306
- 4c Baccalini A, Vergura S, Dolui P, Zanoni G, Maiti D. Org. Biomol. Chem. 2019; 17: 10119
- 4d Gao K, Yoshikai N. Acc. Chem. Rev. 2014; 47: 1208
- 4e Yoshino T, Matsunaga S. Adv. Synth. Catal. 2017; 359: 1245
- 4f Lukasevics L, Grigorjeva L. Org. Biomol. Chem. 2020; 18: 7460
- 5 Gao K, Lee P.-S, Fujita T, Yoshikai N. J. Am. Chem. Soc. 2010; 132: 12249
- 6 Yoshino T, Ikemoto H, Matsunaga S, Kanai M. Angew. Chem. Int. Ed. 2013; 52: 2207
- 7 Grigorjeva L, Daugulis O. Angew. Chem. Int. Ed. 2014; 53: 10209
- 8 Grigorjeva L, Daugulis O. Org. Lett. 2014; 16: 4684
- 9 Grigorjeva L, Daugulis O. Org. Lett. 2014; 16: 4688
- 10 Grigorjeva L, Daugulis O. Org. Lett. 2015; 17: 1204
- 11a For methodology development, see the Supporting Information of ref. 11b.
- 11b Lukasevics L, Oh GN, Wang X, Grigorjeva L, Daugulis O. J. Am. Chem. Soc. 2025; 147: 2476
- 12a Cizikovs A, Grigorjeva L. Inorganics 2023; 11: 194
- 12b Lukasevics L, Grigorjeva L. Mechanistic Studies on Cobalt-Catalyzed, Bidentate Chelation-Assisted C–H Bond Functionalization. In Handbook of C–H Functionalization. Maiti D. Wiley-VCH; Weinheim: 2022
- 13 Nguyen TT, Grigorjeva L, Daugulis O. ACS Catal. 2016; 6: 551
- 14 Nguyen TT, Grigorjeva L, Daugulis O. Chem. Commun. 2017; 53: 5136
- 15 Nguyen TT, Grigorjeva L, Daugulis O. Angew. Chem. Int. Ed. 2018; 57: 1688
- 16a Weiner B, Szymański W, Janssen DB, Minnaard AJ, Feringa BL. Chem. Soc. Rev. 2010; 39: 1656
- 16b Saladino R, Botta G, Crucianelli M. Mini-Rev. Med. Chem. 2012; 12: 277
- 17 Zagorska PA, Grigorjeva L, Bolsakova J. Chem. Heterocycl. Compd. 2021; 57: 159
- 18 Bolsakova J, Lukasevics L, Grigorjeva L. J. Org. Chem. 2020; 85: 4482
- 19 Lukasevics L, Cizikovs A, Grigorjeva L. Org. Lett. 2020; 22: 2720
- 20 Cizikovs A, Lukasevics L, Grigorjeva L. Tetrahedron 2021; 93: 132307
- 21 Lukasevics L, Cizikovs A, Grigorjeva L. Org. Lett. 2021; 23: 2748
- 22 Lukasevics L, Cizikovs A, Grigorjeva L. Chem. Commun. 2022; 58: 9754
- 23 Cizikovs A, Zagorska PA, Grigorjeva L. Org. Lett. 2024; 26: 9536
- 24 Cizikovs A, Basens EE, Zagorska PA, Kinens A, Grigorjeva L. ACS Catal. 2024; 14: 1690
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For selected reviews on cobalt-catalyzed C–H bond functionalization, see: