Subscribe to RSS
DOI: 10.1055/s-0043-1775471
Synthesis of Spirocyclopropane Scaffolds: A Review
C.D.P. is grateful to the Ministry of Tribal Affairs (Scholarship Division), Government of India for a National Fellowship for Higher Education of Scheduled Tribe (ST) Students (202223-NFST-GUJ-00003).

Abstract
This review highlights different synthetic strategies for preparing a spirocyclopropane moiety, covering the literature from 1989 to 2024. The spirocyclopropane moiety is a structural scaffold that is used to access synthetic libraries of highly functionalized spirocarbo- and heterocyclic molecules. The review showcases different routes for the synthesis of spirocyclopropanes that utilize distinct precursors and methodologies, including cascade reactions, cyclopropanation, Michael-initiated ring closure (MIRC), and one-pot and multicomponent synthesis. These discussions are organized around the oxindole core, which include isatin, oxindole, 3-chlorooxindole, and 3-alkenyl oxindoles. Additionally, this review explores various ylides and other techniques. The goal of this review is to provide a background for synthetic chemistry researchers to develop new ideas and novel synthetic routes to spirocyclopropanes.
1 Introduction
2 Synthesis of Spirocyclopropanes from 3-Chlorooxindole Derivatives
3 Synthesis of Spirocyclopropanes from Isatin Derivatives
3.1 Synthesis of Spirocyclopropanes from Alkylidene Oxindole Derivatives
3.2 Synthesis of Spirocyclopropanes from Diazooxindole Compounds
4 Synthesis of Spirocyclopropanes from 1,3-Diones
5 Synthesis of Spirocyclopropanes from N-Ylides
6 Synthesis of Spirocyclopropanes from S-Ylides
7 Miscellaneous Syntheses of Spirocyclopropanes
8 Conclusion
9 List of Abbreviations
Publication History
Received: 12 December 2024
Accepted after revision: 19 March 2025
Article published online:
04 June 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Faust R. Angew. Chem. Int. Ed. 2001; 40: 2251
- 2 Murphree SS. Three-Membered Heterocycles. Structure and Reactivity . In Modern Heterocyclic Chemistry . Alvarez-Builla J, Vaquero JJ, Barluenga J. Wiley-VCH; Weinheim: 2011: 11-162
- 3 Freund A. J. Prakt. Chem. 1882; 26: 367
- 4 Lucas GH, Henderson VE. Can. Med. Assoc. J. 1929; 21: 173
- 5 Barrett AG. M, Kasdorf K. J. Am. Chem. Soc. 1996; 118: 11030
- 6 Wessjohann LA, Brandt W, Thiemann T. Chem. Rev. 2003; 103: 1625
- 7 Wong HN. C, Hon MY, Tse CW, Yip YC, Tanko J, Hudlicky T. Chem. Rev. 1989; 89: 165
- 8 Aalinejad M, Noroozi Pesyan N. J. Chin. Chem. Soc. 2019; 66: 1523
- 9 Noroozi Pesyan N, Bibak S, Aalinejad M. J. Iran. Chem. Soc. 2020; 17: 411
- 10 Gholizadeh S, Safa KD, Noroozi Pesyan N. J. Iran. Chem. Soc. 2019; 16: 1239
- 11 Sarkar T, Das B, Talukdar K, Shah T, Punniyamurthy T. ACS Omega 2020; 5: 26316
- 12a Beutner GL, George DT. Org. Process Res. Dev. 2023; 27: 10
- 12b Xuan Y.-N, Nie S.-Z, Dong L.-T, Zhang J.-M, Yan M. Org. Lett. 2009; 11: 1583
- 12c Sakla AP, Kansal P, Shankaraiah N. Eur. J. of Org. Chem. 2021; 2021 (5): 757
- 13 Russo A, Meninno S, Tedesco C, Lattanzi A. Eur. J. Org. Chem. 2011; 5096
- 14 Moorthy R, Bio-sawe W, Thorat SS, Sibi MP. Org. Chem. Front. 2024; 11: 4560
- 15 Kashani E, Noroozi Pesyan N, Rashidnejad H, Poursattar Marjani A, Yaghoobnejad Asl H. J. Iran. Chem. Soc. 2017; 14: 2143
- 16 Tan B, Candeias NR, Barbas CF. Nat. Chem. 2011; 3: 473
- 17 Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
- 18 Mugishima T, Tsuda M, Kasai Y, Ishiyama H, Fukushi E, Kawabata J, Watanabe M, Akao K, Kobayashi J. J. Org. Chem. 2005; 70: 9430
- 19 Badillo JJ, Hanhan NV, Franz AK. Curr. Opin. Drug Discovery Dev. 2010; 13: 758
- 20 Karthik G, Rajasekaran T, Sridhar B, Reddy BV. S. Tetrahedron Lett. 2014; 55: 7064
- 21 Kapure JS, Reddy CN, Adiyala PR, Nayak R, Nayak VL, Nanubolu JB, Singarapu KK, Maurya RA. RSC Adv. 2014; 4: 38425
- 22 Li Y, Li Q.-Z, Huang L, Liang H, Yang K.-C, Leng H.-J, Liu Y, Shen X.-D, Gou X.-J, Li J.-L. Molecules 2017; 22: 328
- 23 Noroozi Pesyan N, Rashidnejad H. J. Iran. Chem. Soc. 2017; 14: 1365
- 24 Wu W, Lin Z, Jiang H. Org. Biomol. Chem. 2018; 16: 7315
- 25 Ošeka M, Noole A, Žari S, Öeren M, Järving I, Lopp M, Kanger T. Eur. J. Org. Chem. 2014; 3599
- 26 Li J.-H, Feng T.-F, Du D.-M. J. Org. Chem. 2015; 80: 11369
- 27 Noole A, Malkov AV, Kanger T. Synthesis 2013; 45: 2520
- 28 Kuang Y, Shen B, Dai L, Yao Q, Liu X, Lin L, Feng X. Chem. Sci. 2018; 9: 688
- 29 Avula VK. R, Chintha VR, Vallela S, Anireddy JS, Chamarthi NR, Wudayagiri R. J. Heterocycl. Chem. 2019; 56: 209
- 30 Wen J.-B, Du D.-M. Org. Biomol. Chem. 2020; 18: 1647
- 31 Chen L, He J. J. Org. Chem. 2020; 85: 5203
- 32 Zhang J.-R, Jin H.-S, Sun J, Wang J, Zhao L.-M. Eur. J. Org. Chem. 2020; 4988
- 33 Yuan W.-C, Lei C.-W, Zhao J.-Q, Wang Z.-H, You Y. J. Org. Chem. 2021; 86: 2534
- 34 Wang N, Yan X, Hu Z.-T, Feng Y, Zhu L, Chen Z.-H, Wang H, Wang Q.-L, Ouyang Q, Zheng P.-F. Org. Lett. 2022; 24: 8553
- 35 Molteni G, Silvani A. Eur. J. Org. Chem. 2021; 1653
- 36 Kayukova O, Kayukov YS, Lapteva E, Bardasov I, Ershov O, Nasakin O. Russ. J. Org. Chem. 2006; 42: 1414
- 37 Peng C, Zhai J, Xue M, Xu F. Org. Biomol. Chem. 2017; 15: 3968
- 38 Hajra S, Roy S, Saleh SK. A. Org. Lett. 2018; 20: 4540
- 39 Ma H, Liang J, Ablajan K. New J. Chem. 2022; 46: 19857
- 40 Jiang T, Kuhen KL, Wolff K, Yin H, Bieza K, Caldwell J, Bursulaya B, Wu TY.-H, He Y. Bioorg. Med. Chem. Lett. 2006; 16: 2105
- 41 Jiang T, Kuhen KL, Wolff K, Yin H, Bieza K, Caldwell J, Bursulaya B, Tuntland T, Zhang K, Karanewsky D, He Y. Bioorg. Med. Chem. Lett. 2006; 16: 2109
- 42 Reddy CN, Nayak VL, Mani GS, Kapure JS, Adiyala PR, Maurya RA, Kamal A. Bioorg. Med. Chem. Lett. 2015; 25: 4580
- 43 Rodriguez KX, Howe EN, Bacher EP, Burnette M, Meloche JL, Meisel J, Schnepp P, Tan X, Chang M, Zartman J, Zhang S, Ashfeld BL. ChemMedChem 2019; 14: 1653
- 44 Sampson PB, Liu Y, Patel NK, Feher M, Forrest B, Li S.-W, Edwards L, Laufer R, Lang Y, Ban F, Awrey DE, Mao G, Plotnikova O, Leung G, Hodgson R, Mason J, Wei X, Kiarash R, Green E, Qiu W, Chirgadze NY, Mak TW, Pan G, Pauls HW. J. Med. Chem. 2015; 58: 130
- 45 Han W.-Y, Zhao J, Wang J.-S, Cui B.-D, Wan N.-W, Chen Y.-Z. Tetrahedron 2017; 73: 5806
- 46 Noole A, Ošeka M, Pehk T, Öeren M, Järving I, Elsegood MR. J, Malkov AV, Lopp M, Kanger T. Adv. Synth. Catal. 2013; 355: 829
- 47 Xiao L, Jin L, Zhao Y, Guo J, Stephan DW. Chem. Commun. 2023; 59: 1833
- 48 Manna A, Joshi H, Singh VK. J. Org. Chem. 2023; 88: 15937
- 49 Cao Z.-Y, Wang X, Tan C, Zhao X.-L, Zhou J, Ding K. J. Am. Chem. Soc. 2013; 135: 8197
- 50 Muthusamy S, Ramkumar R. Tetrahedron Lett. 2014; 55: 6389
- 51 Muthusamy S, Ramkumar R. Synlett 2015; 26: 2156
- 52 Suleman M, Li Z, Lu P, Wang Y. Eur. J. Org. Chem. 2019; 4447
- 53 Zhao S, Chen X.-X, Gao N, Qian M, Chen X. J. Org. Chem. 2021; 86: 7131
- 54 Pan B.-W, Shi Y, Dong S.-Z, He J.-X, Mu B.-S, Wu W.-B, Zhou Y, Zhou F, Zhou J. Org. Chem. Front. 2022; 9: 2640
- 55 Yan C. Green Synth. Catal. 2023; 4: 78
- 56 Elinson MN, Vereshchagin AN, Stepanov NO, Zaimovskaya TA, Merkulova VM, Nikishin GI. Tetrahedron Lett. 2010; 51: 428
- 57 Li S.-S, Qin Q, Qi Z, Yang L.-M, Kang Y, Zhang X.-Z, Ma A.-J, Peng J.-B. Org. Chem. Front. 2021; 8: 3069
- 58 Ren Z, Cao W, Tong W, Chen J, Deng H, Wu D. Synth. Commun. 2008; 38: 2200
- 59 Banothu J, Basavoju S, Bavantula R. J. Heterocycl. Chem. 2015; 52: 853
- 60 Ghorbani-Vaghei R, Maghbooli Y. Synthesis 2016; 48: 3803
- 61 Qian P, Du B, Song R, Wu X, Mei H, Han J, Pan Y. J. Org. Chem. 2016; 81: 6546
- 62 Nie B.-J, Wu L.-H, Hu R.-F, Sun Y, Wu J, He P, Huang N.-Y. Synth. Commun. 2017; 47: 1368
- 63 Penjarla TR, Shukla AK, Hazra R, Roy D, Kundarapu M, Dixit M, Bhattacharya A. Org. Biomol. Chem. 2022; 20: 3779
- 64 Wang C, Yang L. Org. Prep. Proced. Int. 2023; 55: 288
- 65 Zhang X, Chang M, Xu X, Zhao Q. Chem. Commun. 2024; 60: 6769
- 66 Noroozi Pesyan N, Gharib A, Behroozi M, Shokr A. Arabian J. Chem. 2017; 10: S1558
- 67 Fu Q, Yan C.-G. Tetrahedron 2013; 69: 5841
- 68 Yavari I, Naeimabadi M, Sheykhahmadi J, Bahemmat S, Halvagar MR. ChemistrySelect 2017; 2: 11370
- 69 Roiser L, Waser M. Org. Lett. 2017; 19: 2338
- 70 Zhang J.-Q, Gao Y, Song J, Hu D, Miao M, Ren H. Synlett 2021; 32: 626
- 71 Yavari I, Sheikhi S, Sheykhahmadi J, Taheri Z, Halvagar MR. Synthesis 2021; 53: 2057
- 72 You Y, Quan B.-X, Wang Z.-H, Zhao J.-Q, Yuan W.-C. Org. Biomol. Chem. 2020; 18: 4560
- 73 Luo J, Wu B, Chen M.-W, Jiang G.-F, Zhou Y.-G. Org. Lett. 2014; 16: 2578
- 74 Nambu H, Fukumoto M, Hirota W, Ono N, Yakura T. Tetrahedron Lett. 2015; 56: 4312
- 75 Liu M, Liu C.-F, Zhang J, Xu Y.-J, Dong L. Org. Chem. Front. 2019; 6: 664
- 76 Gong Y, Xu X.-C, Yang Z.-X, Zhao Y.-L. Org. Chem. Front. 2024; 11: 3369
- 77 Roy S, Chen K. J. Chin. Chem. Soc. 2013; 60: 597
- 78 Prakash M, Samanta S. Org. Biomol. Chem. 2023; 21: 2001
- 79 Zhu C.-L, Ma J.-A, Cahard D. Asian J. Org. Chem. 2016; 5: 66
- 80 Pfeiffer J, Nieger M, Dötz KH. Eur. J. Org. Chem. 1998; 1011
- 81 Guarna A, Brandi A, De Sarlo F, Goti A, Pericciuoli F. J. Org. Chem. 1988; 53: 2426
- 82 de Meijere A, Teichmann S, Yu D, Kopf J, Oly M, von Thienen N. Tetrahedron 1989; 45: 2957
- 83 Shen M, Xu Y, Zhang X, Fan X. Org. Chem. Front. 2022; 9: 1410
- 84 Noroozi Pesyan N, Rezaee M. Monatsh. Chem. 2014; 145: 1165
- 85 Noroozi Pesyan NN, Kimia MA, Jalilzadeh M, Şahin E. J. Chin. Chem. Soc. 2013; 60: 35