Subscribe to RSS
DOI: 10.1055/s-0043-1775457
Catalytic Decarbonylative Functionalization of C–H Bonds with Carboxylic Acids
Support was provided by the Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Renmin University of China. H.Z. thanks the National Natural Science Foundation of China (No. 82304704) and the Key Laboratory of Forensic Toxicology, Ministry of Public Security (No. 2024FTDWFX03) for financial support.

Abstract
Within the past decades, the potential of transition-metal-catalyzed cross-coupling reactions using carboxylic acids as the coupling partners has been subjected to extensive exploitation because of the natural abundance, ready availability, nontoxicity, stability, structural diversity, and low cost of carboxylic acids. Notably, recent years have witnessed intense research interest in the combination of decarbonylation of carboxylic acids with direct C–H bond functionalization in the presence of transition-metal catalysts for the formation of various C–C bonds with release of CO. The approach presents a powerful alternative to the existing repertoire of transition-metal-catalyzed direct functionalization of C–H bonds via C–C bond formation. In this Account, we highlight our recent achievements in the development of decarbonylative functionalization of C–H bonds with carboxylic acids under transition-metal catalysis.
1 Introduction
2 Arylation with Aryl Carboxylic Acids
3 Alkenylation with Alkenyl Carboxylic Acids
4 Alkylation with Alkyl Carboxylic Acids
5 Conclusion and Outlook
Key words
decarbonylation - C–H functionalization - carboxylic acids - anhydride - arylation - alkenylation - alkylationPublication History
Received: 17 January 2025
Accepted after revision: 12 February 2025
Article published online:
31 March 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 1b Handbook of Organopalladium Chemistry for Organic Synthesis, Vol. I. Negishi E. Wiley-Interscience; New York: 2002
- 1c Metal-Catalyzed Cross-Coupling Reactions, Vols. 1 and 2. de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2008
- 1d Cahiez G, Moyeux A. Chem. Rev. 2010; 110: 1435
- 1e Hartwig JF. Organotransition Metal Chemistry: From Bonding to Catalysis . University Science Books; Sausalito: 2010
- 1f Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
- 2a Seregin IV, Gevorgyan V. Chem. Soc. Rev. 2007; 36: 1173
- 2b Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
- 2c Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
- 2d Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 2e Wencel-Delod J, Droge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
- 2f Engle KM, Mei TS, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
- 2g Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
- 2h Ping L, Chung DS, Bouffard J, Lee SG. Chem. Soc. Rev. 2017; 46: 4299
- 2i Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
- 2j Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13810
- 2k Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
- 2l Mihai MT, Genov GR, Phipps RJ. Chem. Soc. Rev. 2018; 47: 149
- 2m Davies HM. L, Liao K. Nat. Rev. Chem. 2019; 3: 347
- 2n Gandeepan P, Muller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
- 2o Zhao Q, Meng G, Nolan SP, Szostak M. Chem. Rev. 2020; 120: 1981
- 2p Barranco S, Zhang J, López-Resano S, Casnati A, Pérez-Temprano MH. Nat. Synth. 2022; 1: 841
- 2q Sinha SK, Ghosh P, Jain S, Maiti S, Al-Thabati SA, Alshehri AA, Mokhtar M, Maiti D. Chem. Soc. Rev. 2023; 52: 7461
- 2r Docherty JH, Lister TM, Mcarthur G, Findlay MT, Domingo-Legarda P, Kenyon J, Choudhary S, Larrosa I. Chem. Rev. 2023; 123: 7692
- 2s Wu K, Lam N, Strassfeld DA, Fan Z, Qiao JX, Liu T, Stamos D, Yu J.-Q. Angew. Chem. Int. Ed. 2024; 63: e202400509
- 3a Shang R, Liu L. Sci. China: Chem. 2011; 54: 1670
- 3b Rodriguez N, Goossen LJ. Chem. Soc. Rev. 2011; 40: 5030
- 3c Dzik WI, Lange PP, Goossen LJ. Chem. Sci. 2012; 3: 2671
- 3d Perry GJ. P, Larrosa I. Eur. J. Org. Chem. 2017; 3517
- 3e Patra T, Maiti D. Chem. Eur. J. 2017; 23: 7382
- 3f Wei Y, Hu P, Zhang M, Su WP. Chem. Rev. 2017; 117: 8864
- 3g Rahaman A, Chauhana SS, Bhadra S. Org. Biomol. Chem. 2023; 21: 5691
- 4 Held H, Rengstl A, Mayer D. In Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2000: 3
- 5a Goossen LJ, Rodriguez N, Goossen K. Angew. Chem. Int. Ed. 2008; 47: 3100
- 5b Dermenci A, Dong G. Sci. China: Chem. 2013; 56: 685
- 6a Jin W, Yu Z, He W, Ye W, Xiao W.-J. Org. Lett. 2009; 11: 1317
- 6b Ye W, Luo N, Yu Z. Organometallics 2010; 29: 1049
- 7a Nagayama K, Shimizu I, Yamamoto A. Chem. Lett. 1998; 27: 1143
- 7b Goossen LJ, Ghosh K. Eur. J. Org. Chem. 2002; 3254
- 7c Kakino R, Yasumi S, Shimizu I, Yamamoto A. Bull. Chem. Soc. Jpn. 2002; 75: 137
- 7d Kakino R, Narahashi H, Shimizu I, Yamamoto A. Bull. Chem. Soc. Jpn. 2002; 75: 1333
- 7e Yin H, Zhao C, You H, Lin K, Gong H. Chem. Commun. 2012; 48: 7034
- 7f Jia X, Zhang X, Qian Q, Gong H. Chem. Commun. 2015; 51: 10302
- 7g Maetani S, Fukuyama T, Suzuki N, Ishihara D, Ryu I. Chem. Commun. 2012; 48: 2552
- 7h Zhang X, Jordan F, Szostak M. Org. Chem. Front. 2018; 5: 2515
- 7i Liu Y, Virgil SC, Grubbs RH, Stoltz BM. Angew. Chem. Int. Ed. 2015; 54: 11800
- 7j Goossen LJ, Paetzold J, Winkel L. Synlett 2002; 1721
- 7k Goossen LJ, Paetzold J. Adv. Synth. Catal. 2004; 346: 1665
- 7l Malapit CA, Bour JR, Laursen SR, Sanford MS. J. Am. Chem. Soc. 2019; 141: 17322
- 7m Liu C, Ji CL, Hong X, Szostak M. Angew. Chem. Int. Ed. 2018; 57: 16721
- 7n Liu C, Ji CL, Qin ZX, Hong X, Szostak M. iScience 2019; 19: 749
- 7o Feng B, Zhang G, Feng X, Chen Y. Org. Chem. Front. 2022; 9: 1085
- 7p Liu C, Qin ZX, Ji CL, Hong X, Szostak M. Chem. Sci. 2019; 10: 5736
- 7q Zhang J.-S, Chen T, Han L.-B. Eur. J. Org. Chem. 2020; 1148
- 7r Li X, Liu L, Huang T, Tang Z, Li C, Li W, Zhang T, Li Z, Chen T. Org. Lett. 2021; 23: 3304
- 7s Liu C, Szostak M. Org. Lett. 2021; 23: 4726
- 7t Xu T, Li W, Zhang K, Han Y, Liu L, Huang T, Li C, Tang Z, Chen T. J. Org. Chem. 2022; 87: 11871
- 7u Zhang G, Miao H, Guan C, Ding C. J. Org. Chem. 2022; 87: 12791
- 7v Xu T, Zhou X, Xiao X, Yuan Y, Liu L, Huang T, Li C, Tang Z, Chen T. J. Org. Chem. 2022; 87: 8672
- 8a Chiusoli GP, Catellani M, Costa M, Motti E, Ca ND, Maestri G. Coord. Chem. Rev. 2010; 254: 456
- 8b Rossi R, Bellina F, Lessi M, Manzini C. Adv. Synth. Catal. 2014; 356: 17
- 8c Basak S, Biswas JP, Maiti D. Synthesis 2021; 53: 3151
- 8d Grover J, Prakash G, Goswami N, Maiti D. Nat. Commun. 2022; 13: 1085
- 8e Li M, Wang J. Synthesis 2022; 54: 4734
- 9 Pan F, Lei Z.-Q, Wang H, Li H, Sun J, Shi Z.-J. Angew. Chem. Int. Ed. 2013; 52: 2063
- 10 Maetani S, Fukuyama T, Ryu I. Org. Lett. 2013; 15: 2754
- 11 Lei Z.-Q, Ye J.-H, Sun J, Shi Z.-J. Org. Chem. Front. 2014; 1: 634
- 12 Zhang L, Xue X, Xu C, Pan Y, Zhang G, Xu L, Li H, Shi Z. ChemCatChem 2014; 6: 3069
- 13 Kwon S, Kang D, Hong S. Eur. J. Org. Chem. 2015; 3671
- 14 Zhao H, Xu J, Xu X, Pan Y, Yu Z, Xu L, Fan Q, Walsh PJ. Adv. Synth. Catal. 2021; 363: 3995
- 15 Zhao H, Zeng Q, Yang J, Huang X, Li X, Lei H, Xu L, Walsh PJ. Adv. Synth. Catal. 2024; 366: 1820
- 16a Koubachi J, Brahmi NE, Guillaumet G, Kazzouli SE. Eur. J. Org. Chem. 2019; 2568
- 16b Deb A, Maiti D. Eur. J. Org. Chem. 2017; 1239
- 16c Petrini M. Chem. Eur. J. 2017; 23: 16115
- 16d Zhou L, Lu W. Chem. Eur. J. 2014; 20: 634
- 17 Zhang L, Qiu R, Xue X, Pan Y, Xu C, Wang D, Wang X, Xu L, Li H. Chem. Commun. 2014; 50: 12385
- 18 Qiu R, Zhang L, Xu C, Pan Y, Pang H, Xu L, Li H. Adv. Synth. Catal. 2015; 357: 1229
- 19 Xu C, Zhang L, Xu J, Pan Y, Li F, Li H, Xu L. ChemistrySelect 2016; 4: 653
- 20 Xu J, Chen C, Zhao H, Xu C, Pan Y, Xu X, Li H, Xu L, Fan B. Org. Chem. Front. 2018; 5: 734
- 21 Zhao H, Xu X, Luo Z, Cao L, Li B, Li H, Xu L, Fan Q, Walsh PJ. Chem. Sci. 2019; 10: 10089
- 22a Evano G, Theunissen C. Angew. Chem. Int. Ed. 2019; 58: 7202
- 22b Evano G, Theunissen C. Angew. Chem. Int. Ed. 2019; 58: 7558
- 23 Qiu X, Wang P, Wang D, Wang M, Yuan Y, Shi Z. Angew. Chem. Int. Ed. 2019; 58: 1504
- 24a Kanyiva KS, Löbermann F, Nakao Y, Hiyama T. Tetrahedron Lett. 2009; 50: 3463
- 24b Lee W.-C, Wang T.-H, Ong T.-G. Chem. Commun. 2014; 50: 3671
- 24c Charpentier J, Früh N, Foser S, Togni A. Org. Lett. 2016; 18: 756
- 25 Zhao H, Luo Z, Yang J, Li B, Han J, Xu L, Lai W, Walsh PJ. Chem. Eur. J. 2022; 28: e202200441
- 26 See ref. 15.
- 27a Roberts RM, Khalaf AA. Friedel–Crafts Alkylation Chemistry: A Century of Discovery . Marcel Dekker; New York: 1984
- 27b Heravi MM, Zadsirjan V, Masoumi B, Heydari M. J. Organomet. Chem. 2019; 879: 78
- 28a See ref. 2a
- 28b Ankade SB, Shabade AB, Soni V, Punji B. ACS Catal. 2021; 11: 3268
- 28c Liu Z.-S, Wang D, Cheng H.-G, Zhou Q. ChemCatChem 2024; 16: e202301764
- 29 Sun AC, McAtee RC, McClain EJ, Stephenson CR. J. Synthesis 2019; 51: 1063
- 30 Zhao H, Xu X, Yu H, Li B, Xu X, Li H, Xu L, Fan Q, Walsh PJ. Org. Lett. 2020; 22: 4228
- 31 Yu H, Zhao H, Xu X, Zhang X, Yu Z, Li L, Wang P, Shi Q, Xu L. Asian J. Org. Chem. 2021; 10: 879
- 32 Tian Y, Liu X, He B, Ren Y, Su W. RSC Adv. 2021; 11: 19827
- 33 Suzuki H, Kawai Y, Takemura Y, Matsuda T. Org. Biomol. Chem. 2022; 20: 2808
- 34a Sun Q, Yoshikai N. Org. Chem. Front. 2018; 5: 2214
- 34b Han X, Yuan Y, Shi Z. J. Org. Chem. 2019; 84: 12764
- 35 Zhao H, Zeng Q, Yang J, Xu B, Lei H, Xu L, Walsh PJ. Org. Biomol. Chem. 2022; 20: 7645
- 36a Liu C, Ji C.-L, Zhou T, Hong X, Szostak M. Angew. Chem. Int. Ed. 2021; 60: 10690
- 36b Xiang K, Zhang S, Liu L, Huang T, Tang Z, Li C, Xu K, Chen T. Org. Chem. Front. 2021; 8: 2543
- 36c Zhang S, Cen M, Li C, Liu L, Huang T, Chen T. Org. Lett. 2024; 26: 4660
For selected reviews on transition-metal-catalyzed C–H activation, see:
For selected reviews, see:
For selected reviews, see:
For recent C–H alkenylation of imidazoles, see:
For Pd(II)-catalyzed decarbonylative functionalization of C–H bonds with carboxylic acids, see: