RSS-Feed abonnieren
DOI: 10.1055/s-0043-1773540
Synthesis of Indolo[1,2-a]quinoxalines and 2-Arylquinazolinones by Oxidative Aromatization from Aromatic Aldehydes or Benzyl Alcohols
Financial support from the Natural Science Foundation of Jiangsu Province (BK20191197) and Suzhou University of Science and Technology is gratefully acknowledged.

Abstract
We report a simple protocol for the synthesis of heterocyclic indoloquinoxalines and 2-naphthylquinazolinones by an oxidative aromatization from aromatic aldehydes or benzyl alcohols. For aromatic aldehydes, a diphenyl hydrogen phosphate/Cu(OTf)2/t-BuOOH system delivered the products in high yields (73–93%). From benzyl alcohols, a Fe(NO3)3·9H2O/(2,2,6,6-tetramethylpiperidin-1-yl)oxyl/air system was effective, and the products were obtained in moderate to high yields (51–75%). The indolo[1,2-a]quinoxaline compounds displayed fluorescence emission bands at 501–533 nm. Moreover, intramolecular hydrogen bonding was vital for the free rotation of the aryl–aryl bond in ortho-hydroxyindolo[1,2-a]quinoxalines.
Key words
Brønsted acid catalysis - Pictet–Spengler reaction - aromatization - axial chirality - quinoxalinesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1773540.
- Supporting Information
Publikationsverlauf
Eingereicht: 26. Februar 2025
Angenommen nach Revision: 21. März 2025
Artikel online veröffentlicht:
22. April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Deiters A, Martin SF. Chem. Rev. 2004; 104: 2199
- 1b Jung HH, Floreancig PE. J. Org. Chem. 2007; 72: 7359
- 1c Fan L.-L, Huang N, Yang R.-G, He S.-Z, Yang L.-M, Xu H, Zheng Y.-T. Lett. Drug Des. Discovery 2012; 9: 44
- 1d Desplat V, Moreau S, Belisle-Fabre S, Thiolat D, Uranga J, Lucas R, de Moor L, Massip S, Jarry C, Mossalayi DM, Sonnet P, Déléris G, Guillon JJ. Enzym. Inhib. Med. Chem. 2011; 26: 657
- 2 Ma Z.-Z, Hano Y, Nomura T, Chen Y.-J. Heterocycles 1997; 46: 541
- 3 Rustagi V, Aggarwal T, Verma AK. Green Chem. 2011; 13: 1640
- 4 Xu H, Fan L.-l. Eur. J. Med. Chem. 2011; 46: 1919
- 5a Li Y, Su Y.-H, Dong D.-J, Wu Z, Tian S.-K. RSC Adv. 2013; 3: 18275
- 5b Lv W, Budke B, Pawlowski M, Connell PP, Kozikowski A. J. Med. Chem. 2016; 59: 4511
- 5c Dai C.-S, Deng S.-Q, Zhu Q.-H, Tang X.-D. RSC Adv. 2017; 7: 44132
- 6a Raines S, Chai SY, Palopoli FP. J. Heterocycl. Chem. 1976; 13: 711
- 6b Abonía R, Insusaty B, Quiroga J, Kolshorn H, Meier H. J. Heterocycl. Chem. 2001; 38: 671
- 6c Kamal A, Babu KS, Ali Hussaini SM, Srikanth PS, Balakrishna M, Alarifi A. Tetrahedron Lett. 2015; 56: 4619
- 6d Preetam A, Nath M. RSC Adv. 2015; 5: 21843
- 6e Wang Y.-H, Cui L.-Y, Wang Y.-M, Zhou Z.-H. Tetrahedron: Asymmetry 2016; 27: 85
- 6f Devi RV, Garande AM, Bhate PM. Synlett 2016; 27: 2807
- 6g Aiello F, Carullo G, Giordano F, Spina E, Nigro A, Garofalo A, Tassini S, Costantino G, Vincetti P, Bruno A, Radi M. ChemMedChem 2017; 12: 1279
- 7a Pictet A, Spengler T. Ber. Dtsch. Chem. Ges. 1911; 44: 2030
- 7b Nalikezhathu A, Cherepakhin V, Williams TJ. Org. Lett. 2020; 22: 4979
- 7c Das S, Liu L, Zheng Y, Alachraf W, Thiel W, De CK, List B. J. Am. Chem. Soc. 2016; 138: 9429
- 7d Zheng C, You S.-L. Acc. Chem. Res. 2020; 53: 974
- 7e Klausen RS, Kennedy CK, Hyde AM, Jacobsen EN. J. Am. Chem. Soc. 2017; 139: 12299
- 8a Wang C, Li Y, Guo R, Tian J.-J, Tao C, Chen B, Wang H.-Y, Zhang J, Zhai H.-B. Asian J. Org. Chem. 2015; 4: 866
- 8b Ramamohan M, Sridhar R, Raghavendrarao K, Paradesi N, Chandrasekhar KB, Jayaprakash S. Synlett 2015; 26: 1096
- 9a Cheeseman GW. H, Rafig M. J. Chem. Soc. C 1971; 2732
- 9b Zhang C, Wang Z.-X. Appl. Organomet. Chem. 2009; 23: 9
- 9c Tradtrantip L, Sonawane ND, Namkung W, Verkman AS. J. Med. Chem. 2009; 52: 6447
- 9d Wang C, Li Y, Zhao J.-F, Cheng B, Wang H.-F, Zhai H.-B. Tetrahedron Lett. 2016; 57: 3908
- 9e Li J.-X, Zhang J.-L, Yang H.-M, Gao Z, Jiang G.-X. J. Org. Chem. 2017; 82: 765
- 10a Xu L, Jiang Y, Ma D. Org. Lett. 2012; 14: 1150
- 10b Majumdar B, Sarma D, Jain S, Sarma TK. ACS Omega 2018; 3: 13711
- 10c Hakim Siddiki SM. A, Kon K, Touchy AS, Shimizu K.-i. Catal. Sci. Technol. 2014; 4: 1716
- 10d Zhang Z, Wang M, Zhang C, Zhang Z, Lu J, Wang F. Chem. Commun. 2015; 51: 9205
- 10e Nguyen VT, Ngo HQ, Le DT, Truong T, Phan NT. S. Chem. Eng. J. 2016; 284: 778
- 10f Dandia A, Sharma R, Indora A, Parewa V. ChemistrySelect 2018; 3: 8285
- 10g Zhao D, Zhou Y.-R, Shen Q, Li J.-X. RSC Adv. 2014; 4: 6486
- 11 Watson AJ. A, Maxwell AC, Williams JM. J. Org. Biomol. Chem. 2012; 10: 240
- 12a Parua S, Das S, Sikari R, Sinha S, Paul ND. J. Org. Chem. 2017; 82: 7165
- 12b Wang Y, Meng X, Chen G, Zhao P. Catal. Commun. 2018; 104: 106
- 12c Hu Y, Li S, Li H, Li Y, Li J, Duanmu C, Li B. Org. Chem. Front. 2019; 6: 2744
- 12d Upadhyaya K, Thakur RK, Shukla SK, Tripathi JR. P. J. Org. Chem. 2016; 81: 5046
- 12e Li F, Lu L, Liu P. Org. Lett. 2016; 18: 2580
- 13a Jiang G. Adv. Synth. Catal. 2019; 361: 3694
- 13b Wei Z, Zhang J, Yang H, Jiang G. Org. Lett. 2019; 21: 2790
- 13c Gao Z, Wang F, Qian J, Yang H, Xia C, Zhang J, Jiang G. Org. Lett. 2021; 23: 1181
- 13d Gao Z, Qian J, Yang H, Zhang J, Jiang G. Org. Lett. 2021; 23: 1731
- 14 Indolo[1,2-a]quinoxalines 3a–e from Aldehydes: General Procedure (Conditions A) A solution of the appropriate aldehyde 1 (0.3 mmol, 1.5 equiv.), aniline 2a (0.2 mmol), and (PhO)2P(O)OH (5.0 mol%) in toluene (2.0 mL, 0.1 M) was stirred at 80 °C for 4 h. When the reaction was complete, the mixture was cooled to r.t., and Cu(OTf)2 (5.0 mol%) and t-BuOOH (0.6 mmol, 3.0 equiv) were added, and the resulting mixture was stirred at r.t. for 1 h. The solvent was then removed and the crude product was purified by flash column chromatography [silica gel, PE–EtOAc]. Indolo[1,2-a]quinoxalines 3a–e from Benzylic Alcohols: General Procedure (Conditions B) A solution of alcohol 1′ (0.4 mmol, 2.0 equiv), aniline 2a (0.2 mmol), Fe(NO3)3 (10 mol%), TEMPO (10 mol%), and KOH (0.1 mmol, 0.5 equiv) in toluene (2.0 mL, 0.1 M) was stirred at 100 °C for 16 h. The solvent was then removed and the crude product was purified by flash column chromatography [silica gel, PE–EtOAc]. 6-(2-Methoxy-1-naphthyl)-7-methylindolo[1,2-a]quinoxaline (3a) Brown solid, purified by flash chromatography [silica gel, PE–EtOAc (8:1)]; yield: Conditions A; 56.7 mg (73%); Conditions B; 39.6 mg (51%). 1H NMR (400 MHz, CDCl3): δ = 8.57–8.46 (m, 2 H), 8.08–7.98 (m, 2 H), 7.88–7.78 (m, 2 H), 7.61 (ddd, J = 8.6, 7.4, 1.6 Hz, 1 H), 7.58–7.51 (m, 1 H), 7.48–7.35 (m, 4 H), 7.35–7.26 (m, 2 H), 3.83 (s, 3 H), 1.68 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 154.7 (2C), 136.0, 133.3, 132.0, 130.9, 130.4 (2C), 130.1, 129.1, 128.4, 128.0, 127.3, 126.8, 124.5, 124.3, 124.0, 123.7, 121.9 (2C), 120.8, 114.6, 114.5, 113.4, 110.5, 56.6, 8.9. HRMS (ESI): m/z [M + H] + calcd for C27H21N2O: 389.1654; found: 389.1658.