Subscribe to RSS
DOI: 10.1055/s-0043-1773513
Zinc-Catalyzed Carbon Dioxide Based Biodegradable Polycarbonate Synthesis
This research was supported by Gansu Science and Technology Major Project under Grant No. 23ZDFA016, 21ZD4WA021, 22ZD6GA003, and 21JR7RA096, Gansu Key Research and Development Plan under Grant No. 22YF7GA026, the Science and Technology Planning Project of Lanzhou City (2023-1-15), State Key Laboratory Program of the Lanzhou Institute of Chemical Physics, CAS under Grant No. CHGZ-202201, and Autonomous Deployment Project of the State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization under Grant No. CHGZ-202210.

Abstract
Carbon dioxide based degradable polycarbonate can be obtained through the copolymerization reaction of carbon dioxide with epoxide in the presence of a catalyst. This polymer has attracted much attention in recent years owing to its environmentally friendly and sustainable characteristics, and excellent material properties. Due to its unique properties, CO2-based polycarbonate has a wide range of applications in many fields such as electronic and electrical parts, automotive parts, medical devices, aerospace equipment, power electronic equipment, and radiation protection products. Therefore, numerous catalytic systems have been explored for the CO2/epoxide copolymerization process, in which zinc catalyst has the longest history and the greatest variety. In this short review, the significant advances in zinc catalysts for the copolymerization transformation of CO2 with epoxide are demonstrated, covering both heterogeneous and homogeneous catalysts. Moreover, both benefits and drawbacks of zinc catalytic system are described, and the outlook for large-scale industrial applicati ons in the future is also represented.
1 Introduction
2 Heterogeneous Zinc Catalysts
3 Homogeneous Zinc Catalysts
4 Overview of Heterogeneous and Homogeneous Zinc Catalysts
5 Conclusion
Key words
zinc catalyst - carbon dioxide - epoxide - copolymerization - biodegradable polycarbonate synthesisPublication History
Received: 19 September 2024
Accepted after revision: 06 December 2024
Article published online:
12 February 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 He H, Kramer RJ, Soden BJ, Jeevanjee N. Science 2023; 382: 1051
- 2 Lei Y, Wang D, Yu X, Ma S, Zhao W, Cui C, Meng J, Tao S, Guan D. Nature 2023; 622: 514
- 3 Luo Y, Xie K, Ou P, Lavallais C, Peng T, Chen Z, Zhang Z, Wang N, Li X.-Y, Grigioni I, Sinton D, Dunn JB, Sargent EH. Nat. Catal. 2023; 6: 939
- 4 Zhong J, Yang X, Wu Z, Liang B, Huang Y, Zhang T. Chem. Soc. Rev. 2020; 49: 1385
- 5 Wu Y, Wang T, Wang H, Wang X, Dai X, Shi F. Nat. Commun. 2019; 10: 2599
- 6 Ma HY, Liu SJ, Wang HL, Li GM, Zhao K, Cui XJ, Shi F. Green Chem. 2023; 25: 2293
- 7 Liu Y, Lu X.-B. Macromolecules 2023; 56: 1759
- 8 Cao H, Wang X. SusMat 2021; 1: 88
- 9 Inoue S, Koinuma H, Tsuruta T. J. Polym. Sci., Part B 1969; 7: 287
- 10a Yang G.-W, Xie R, Zhang Y.-Y, Xu C.-K, Wu G.-P. Chem. Rev. 2024; 124: 12305
- 10b Ou X, Niu Y, Liu Q, Li L, Wei F, Cui Y, Zhou Y, Yan F. Prog. Polym. Sci. 2024; 149: 101780
- 10c Zhang Y.-Y, Yang G.-W, Lu C, Zhu X.-F, Wang Y, Wu G.-P. Chem. Soc. Rev. 2024; 53: 3384
- 10d Huang J, Worch JC, Dove AP, Coulembier O. ChemSusChem 2020; 13: 469
- 10e Grignard B, Gennen S, Jérôme C, Kleij AW, Detrembleur C. Chem. Soc. Rev. 2019; 48: 4466
- 10f Lu X.-B, Ren B.-H. Chin. J. Polym. Sci. 2022; 40: 1331
- 10g Song B, Qin A, Tang BZ. Cell Rep. Phys. Sci. 2022; 3: 100719
- 10h Plajer AJ, Williams CK. Angew. Chem. Int. Ed. 2022; 61: e202104495
- 10i Kozak CM, Ambrose K, Anderson TS. Coord. Chem. Rev. 2018; 376: 565
- 10j Wang Y, Darensbourg DJ. Coord. Chem. Rev. 2018; 372: 85
- 10k Li Y, Zhang YY, Hu LF, Zhang XH, Du BY, Xu JT. Prog. Polym. Sci. 2018; 82: 120
- 11a McGuire TM, Deacy AC, Buchard A, Williams CK. J. Am. Chem. Soc. 2022; 144: 18444
- 11b Singer FN, Deacy AC, McGuire TM, Williams CK, Buchard A. Angew. Chem. Int. Ed. 2022; 61: e202201785
- 12a Wang W, Qu R, Suo H, Gu Y, Qin Y. Front. Chem. 2023; 11: 1202735
- 12b Wang W.-Z, Zhao C, Li L.-L, Liu S, Zhang Y.-L, Luo L. Polymer 2022; 256: 125188
- 12c Nakabayashi Y, Nakano K. Polym. J. 2021; 53: 203
- 12d Beharaj A, McCaslin EZ, Blessing WA, Grinstaff MW. Nat. Commun. 2019; 10: 5478
- 12e Lu X.-B, Darensbourg DJ. Chem. Soc. Rev. 2012; 41: 1462
- 13a Chiarioni G, van Duina M, Pescarmona PP. Green Chem. 2023; 25: 7612
- 13b Yue T.-J, Ren B.-H, Zhang W.-J, Lu X.-B, Ren W.-M, Darensbourg DJ. Angew. Chem. Int. Ed. 2021; 60: 4315
- 13c Chatterjee C, Chisholm MH. Inorg. Chem. 2011; 50: 4481
- 13d Qin YS, Wang XH, Zhao XJ, Wang FS. Chin. J. Polym. Sci. 2008; 26: 241
- 14a Andrea KA, Kerton FM. Polym. J. 2021; 53: 29
- 14b Della Monica F, Buonerba A, Capacchione C. Adv. Synth. Catal. 2019; 361: 265
- 15a Su Y.-C, Liu G.-L, Ko B.-T. Inorg. Chem. 2023; 62: 8565
- 15b Liu G.-L, Wu H.-W, Lin Z.-I, Liao M.-G, Su Y.-C, Chen C.-K, Ko B.-T. Polym. Chem. 2021; 12: 1244
- 16a Ni K, Kozak CM. Inorg. Chem. 2018; 57: 3097
- 16b Liu Y, Zhou H, Guo J.-Z, Ren W.-M, Lu X.-B. Angew. Chem. Int. Ed. 2017; 56: 4862
- 17a Ge K, Du L. Polyhedron 2023; 239: 116450
- 17b Huang Y, Hu C, Pang X, Zhou Y, Duan R, Sun Z, Chen X. Angew. Chem. Int. Ed. 2022; 61: e202202660
- 17c Sugimoto H, Ohshima H, Inoue S. J. Polym. Sci., Part A: Polym. Chem. 2003; 41: 3549
- 18 Cui D, Nishiura M, Hou Z. Macromolecules 2005; 38: 4089
- 19a Huang Q, Wang W.-Z, Liu S, Jia X.-G, Xia L, Qin F.-L, Wang Q, Liu Y, Li H.-J. Chem. Eng. J. 2023; 477: 147107
- 19b Zhang J, Wang L, Liu S, Li Z. Angew. Chem. Int. Ed. 2022; 61: e202111197
- 19c Yang G.-W, Zhang Y.-Y, Wu G.-P. Acc. Chem. Res. 2021; 54: 4434
- 19d Zhang D, Boopathi SK, Hadjichristidis N, Gnanou Y, Feng X. J. Am. Chem. Soc. 2016; 138: 11117
- 20a Kobayshi M, Tang Y.-L, Tsuruta T, Inoue S. Makromol. Chem. 1973; 169: 69
- 20b Inoue S, Kobayashi M, Koinuma H, Tsuruta T. Makromol. Chem. 1972; 155: 61
- 20c Kobayshi M, Inoue S, Tsuruta T. Macromolecules 1971; 4: 658
- 21 Kuran W, Pasynkiewicz S, Skupińska J. Makromol. Chem. 1976; 177: 1283
- 22 Hilf J, Phillips A, Frey H. Polym. Chem. 2014; 5: 814
- 23 Soga K, Hyakkoku K, Ikeda S. Makromol. Chem. 1978; 179: 2837
- 24 Soga K, Imai E, Hattori I. Polym. J. 1981; 13: 407
- 25a Wang JT, Shu D, Xiao M, Meng YZ. J. Appl. Polym. Sci. 2006; 99: 200
- 25b Zhu Q, Meng YZ, Tjong SC, Zhang YM, Wan W. Polym. Int. 2003; 52: 799
- 26a Pan J, Zhang G, Zheng Y, Lin J, Xu W. J. Cryst. Growth 2007; 308: 89
- 26b Bowden TA, Milton HL, Slawin AM. Z, Lightfoot P. Dalton Trans. 2003; 936
- 27 Ree M, Hwang Y, Kim J.-S, Kim H, Kim G, Kim H. Catal. Today 2006; 115: 134
- 28 Song PF, Xiao M, Du FG, Wang SJ, Gan LQ, Liu GQ, Meng YZ. J. Appl. Polym. Sci. 2008; 109: 4121
- 29 Zhong X, Dehghani F. Appl. Catal., B 2010; 98: 101
- 30 Nakamura M, Tominaga Y. Electrochim. Acta 2011; 57: 36
- 31 Tang L, Luo W, Xiao M, Wang S, Meng Y. J. Polym. Sci., Part A: Polym. Chem. 2015; 53: 1734
- 32 Sudakar P, Sivanesan D, Yoon S. Macromol. Rapid Commun. 2016; 37: 788
- 33 Marbach J, Höfer T, Bornholdt N, Luinstra GA. ChemistryOpen 2019; 8: 828
- 34 Yang Y, Lee JD, Seo YH, Chae J.-H, Bang S, Cheong Y.-J, Lee BY, Lee I.-H, Son US, Jang H.-Y. Dalton Trans. 2022; 51: 16620
- 35 Chen X, Shen Z, Zhang Y. Macromolecules 1991; 24: 5305
- 36 Tan C.-S, Hsu T.-J. Macromolecules 1997; 30: 3147
- 37 Xie D, Wang X, Zhao X, Wang F. Polym. Bull. 2008; 61: 679
- 38 Hu Y, Qiao L, Qin Y, Zhao X, Chen X, Wang X, Wang F. Macromolecules 2009; 42: 9251
- 39 Tao Y, Wang X, Zhao X, Li J, Wang F. Polymer 2006; 47: 7368
- 41 Chen S, Hua Z, Fang Z, Qi G. Polymer 2004; 45: 6519
- 42 Dharman MM, Ahn J.-Y, Lee M.-K, Shim H.-L, Kim K.-H, Kim I, Park D.-W. Green Chem. 2008; 10: 678
- 43 Dharman MM, Ahn J.-Y, Lee M.-K, Shim H.-L, Kim K.-H, Kim I, Park D.-W. Res. Chem. Intermed. 2008; 34: 835
- 44 Sun X.-K, Zhang X.-H, Liu F, Chen S, Du B.-Y, Wang Q, Fan Z.-Q, Qi G.-R. J. Polym. Sci., Part A: Polym. Chem. 2008; 46: 3128
- 45 Lee IK, Ha JY, Cao C, Park D.-W, Ha C.-S, Kim I. Catal. Today 2009; 148: 389
- 46 Wei R.-J, Zhang X.-H, Du B.-Y, Fan Z.-Q, Qi G.-R. Polymer 2013; 54: 6357
- 47 Sebastian J, Darbha S. J. Chem. Sci. 2014; 126: 499
- 48 Sebastian J, Srinivas D. Appl. Catal., A 2014; 482: 300
- 49 Meng Q.-Y, Pepper K, Cheng R.-H, Howdle SM, Liu B.-P. J. Polym. Sci., Part A: Polym. Chem. 2016; 54: 2785
- 50 Jin L, Zeng H, Ullah A. Polym. Chem. 2017; 8: 6431
- 51 Luo L, Wang W.-Z, Wang L, Li L.-L, Zhang Y.-L, Zhao S.-D. E-Polym. 2021; 21: 854
- 52 Zhang X, Dong J, Su Y, Lee EG, Duan Z, Kim I, Liu B. Polym. Chem. 2023; 14: 1263
- 53 Soga K, Hyakkoku K, Izumi K, Ikeda S. J. Polym. Sci., Polym. Chem. Ed. 1978; 16: 2383
- 54 Chen L.-B, Chen H.-S, Lin J. J. Macromol. Sci., Part A: Pure Appl. Chem. 1987; 24: 253
- 55 Yu K, Jones CW. Organometallics 2003; 22: 2571
- 56 Lu H, Qin Y, Wang X, Yang X, Zhang S, Wang F. J. Polym. Sci., Polym. Chem. Ed. 2011; 49: 3797
- 57 Cheng R, Zhou Y, Hou Q, Liu B. Chin. J. Catal. 2018; 39: 1303
- 58a Mang S, Cooper AI, Colclough ME, Chauhan N, Holmes AB. Macromolecules 2000; 33: 303
- 58b Kruper WJ, Dellar DV. J. Org. Chem. 1995; 60: 725
- 59 Sugimoto H, Ohshima H, Inoue S. J. Polym. Sci., Polym. Chem. Ed. 2003; 41: 3549
- 60 Deng J, Ratanasak M, Sako Y, Tokuda H, Maeda C, Hasegawa J, Nozaki K, Ema T. Chem. Sci. 2020; 11: 5669
- 61 Kuran W, Rokicki A, Pasynkiewicz S. J. Organomet. Chem. 1978; 157: 135
- 62 Darensbourg DJ, Holtcamp MW, Struck GE, Zimmer MS, Niezgoda SA, Rainey P, Robertson JB, Draper JD, Reibenspies JH. J. Am. Chem. Soc. 1999; 121: 107
- 63 Darensbourg DJ, Wildeson JR, Yarbrough JC, Reibenspies JH. J. Am. Chem. Soc. 2000; 122: 12487
- 64 Anderson TS, Kozak CM. Eur. Polym. J. 2019; 120: 109237
- 65 Nozaki K, Nakano K, Hiyama T. J. Am. Chem. Soc. 1999; 121: 11008
- 66 Nakano K, Nozaki K, Hiyama T. J. Am. Chem. Soc. 2003; 125: 5501
- 67 Schütze M, Dechert S, Meyer F. Chem. Eur. J. 2017; 23: 16472
- 68 Cheng M, Moore DR, Reczek JJ, Chamberlain BM, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 2001; 123: 8738
- 69a Ellis WC, Jung Y, Mulzer M, Di Girolamo R, Lobkovsky EB, Coates GW. Chem. Sci. 2014; 5: 4004
- 69b Jeske RC, Rowley JM, Coates GW. Angew. Chem. Int. Ed. 2008; 47: 6041
- 69c Byrne CM, Allen SD, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 2004; 126: 11404
- 70a Eberhardt R, Allmendinger M, Luinstra GA, Rieger B. Organometallics 2003; 22: 211
- 70b Kissling S, Lehenmeier MW, Altenbuchner PT, Kronast A, Reiter M, Deglmann P, Seemann UB, Rieger B. Chem. Commun. 2015; 51: 4579
- 71 Kernbichl S, Reiter M, Mock J, Rieger B. Macromolecules 2019; 52: 8476
- 72 Li C, Sablong RJ, Koning CE. Angew. Chem. Int. Ed. 2016; 55: 11572
- 73 Zhang Y.-Y, Yang G.-W, Wu G.-P. Macromolecules 2018; 51: 3640
- 74 Wambach A, Agarwal S, Greiner A. ACS Sustainable Chem. Eng. 2020; 8: 14690
- 75 Xiao Y, Wang Z, Ding K. Chem. Eur. J. 2005; 11: 3668
- 76 Lee BY, Kwon HY, Lee SY, Na SJ, Han S.-i, Yun H, Lee H, Park Y.-W. J. Am. Chem. Soc. 2005; 127: 3031
- 77a Kember MR, White AJ. P, Williams CK. Macromolecules 2010; 43: 2291
- 77b Kember MR, Knight PD, Reung PT. R, Williams CK. Angew. Chem. Int. Ed. 2009; 48: 931
- 78 Deacy AC, Durr CB, Williams CK. Dalton Trans. 2020; 49: 223
- 79 Abbina S, Du G. Organometallics 2012; 31: 7394
- 80 Xu Y, Xiao M, Wang S, Pan M, Meng Y. Polym. Chem. 2014; 5: 3838
- 81 Sobrino S, Navarro M, Fernández-Baeza J, Sánchez-Barba LF, Lara-Sánchez A, Garcés A, Castro-Osma JA, Rodríguez AM. Polymers 2020; 12: 2148