Synthesis 2022; 54(07): 1753-1764
DOI: 10.1055/s-0041-1737764
feature

Asymmetric Synthesis of γ-Amino-Functionalised Vinyl Sulfones: De Novo Preparation of Cysteine Protease Inhibitors

Wen Shen
,
Laura Cunningham
,
Paul Evans
We gratefully acknowledge support from the China Scholarship Council (CSC) for provision of a doctoral scholarship (W.S).


In memory of Prof. Ron Grigg FRS (Emeritus Professor, University of Leeds) and in recognition of his many achievements in the field of organic chemistry and his support in the careers of others

Abstract

The enantioselective azo-based α-amination of an aldehyde followed by a Horner–Wadsworth–Emmons-based vinyl sulfone formation is reported. The thus obtained optically active N,N′-diprotected trans-(phenylsulfonyl)vinyl hydrazine products were then converted into the corresponding N-functionalised trans-(phenylsulfonyl)vinyl amines. Specifically, reaction of 4-phenylbutanal with di-tert-butyl azodicarboxylate (DBAD) in the presence of l- or d-proline, followed by addition of diethyl [(phenylsulfonyl)methyl]phosphonate, gave either enantiomer of di-tert-butyl trans-1-[5-phenyl-1-(phenylsulfonyl)pent-1-en-3-yl]hydrazine-1,2-dicarboxylate. The enantiomeric excesses of the (+)- and (–)-enantiomers prepared in this manner were in the range 86–89%. The conversion of these γ-hydrazino vinyl sulfones into the corresponding γ-amino-substituted compounds was achieved following a Boc deprotection, Zn reduction, N-functionalisation sequence. This three-step sequence was reasonably efficient (approx. 50%) and no erosion of enantiopurity was found to have taken place. The compounds accessed via this process include both enantiomers of tert-butyl trans-[5-phenyl-1-(phenylsulfonyl)pent-1-en-3-yl]carbamate and epimeric dipeptide mimetics including 4-methyl-N-{(S)-1-oxo-3-phenyl-1-[((S,E)-5-phenyl-1-(phenylsulfonyl)pent-1-en-3-yl)amino]propan-2-yl}piperazine-1-carboxamide (also known as K777).

Supporting Information



Publication History

Received: 12 October 2021

Accepted after revision: 17 November 2021

Article published online:
27 January 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For a monograph, see:
    • 1a Sulphones in Organic Synthesis . Simpkins NS. Pergamon Press; Oxford: 1993

    • For selected recent reviews on sulfones, see:
    • 1b Liu NW, Liang S, Manolikakes G. Synthesis 2016; 1939
    • 1c Trost BM, Kalnmals CA. Chem. Eur. J. 2019; 25: 11193

      For reviews specifically concerning the synthesis and use of unsaturated sulfones, see:
    • 2a Fuchs PL, Braish TF. Chem. Rev. 1986; 86: 903
    • 2b Simpkins NS. Tetrahedron 1990; 46: 6951
    • 2c Bäckvall J.-E, Chinchilla R, Nájera C, Yus M. Chem. Rev. 1998; 98: 2291
    • 2d Back TG. Tetrahedron 2001; 57: 5263
    • 2e Forristal I. J. Sulfur Chem. 2005; 26: 163
    • 2f Meadows DC, Gervay-Hauge J. Med. Res. Rev. 2006; 26: 793
    • 2g Fang Y, Luo Z, Xu X. RSC Adv. 2016; 6: 59661
    • 2h Yadav D, Menon RS. Org. Biomol. Chem. 2020; 18: 365
    • 3a Palmer JT, Rasnick D, Klaus JL, Brömme D. J. Med. Chem. 1995; 38: 3193

    • For a review, including drugs containing the sulfone moiety, see:
    • 3b Feng M, Tang B, Liang SH, Jiang X. Curr. Top. Med. Chem. 2016; 16: 1200

      See, for example:
    • 4a Scheidt KA, Roush WR, McKerrow JH, Selzer PM, Hansell E, Rosenthal PJ. Bioorg. Med. Chem. 1998; 6: 2477
    • 4b Götz MG, Caffrey CR, Hansell E, McKerrow JH, Powers JC. Bioorg. Med. Chem. 2004; 12: 5203
    • 4c Yang P.-Y, Wang M, He CY, Yao SQ. Chem. Commun. 2012; 48: 835
    • 4d Fennell BD, Warren JM, Chung KK, Main HL, Arend AB, Tochowicz A, Götz MG. J. Enzyme Inhib. Med. Chem. 2013; 28: 468
    • 4e Schirmeister T, Kesselring J, Jung S, Schneider TH, Weickert A, Becker J, Lee W, Hellmich UA, Engels B. J. Am. Chem. Soc. 2016; 138: 8332
    • 4f Zhang H, Ajayi O, Collins J, Crown O, Nyamwihura R, Ogungbe IV. Bioorg. Med. Chem. Lett. 2020; 30: 127217
    • 4g Aratikatla EK, Kalamuddin M, Malhotra P, Mohmmed A, Bhattacharya AK. ACS Omega 2020; 5: 29025

    • For a perspective, see:
    • 4h Ettari R, Tamborini L, Angelo IC, Micale N, Pinto A, De Micheli C, Conti C. J. Med. Chem. 2013; 56: 5637
  • 5 Mellott DM, Tseng C.-T, Drelich A, Fajtová P, Chenna BC, Kostomiris DH, Hsu J, Zhu J, Taylor ZW, Kocurek KI, Tat V, Katzfuss A, Li L, Giardini MA, Skinner D, Hirata K, Yoon MC, Beck S, Carlin AF, Clark AE, Beretta L, Maneval D, Hook V, Frueh F, Hurst BL, Wang H, Raushel FM, O’Donoghue AJ, de Siqueira-Neto JL, Meek TD, McKerrow JH. ACS Chem. Biol. 2021; 16: 642
    • 6a Dunny E, Doherty W, Evans P, Malthouse JP. G, Nolan D, Knox A. J. Med. Chem. 2013; 56: 6638
    • 6b Doherty W, James J, Evans P, Martin L, Adler N, Nolan D, Knox A. Org. Biomol. Chem. 2014; 12: 7561
    • 6c Doherty W, Adler N, Knox A, Nolan D, McGouran J, Pratima Nikalje A, Sarkate A, Lokwani D, Evans P. Eur. J. Org. Chem. 2017; 175

      For recent ‘non-amino acid based strategies’ for the synthesis of K777, see:
    • 7a Kiemele ER, Wathier M, Bichler P, Love JA. Org. Lett. 2016; 18: 492
    • 7b Kammer LM, Lipp B, Opatz T. J. Org. Chem. 2019; 84: 2379
  • 8 Doherty W, Evans P. J. Org. Chem. 2016; 81: 1416
  • 9 Ariza X, Urpí F, Viladomat C, Vilarrasa J. Tetrahedron Lett. 1998; 39: 9101
  • 10 The enantiomer, (R)-3, was also prepared in similar yields from (S)-6.
  • 11 Bianchi A, Bernardi A. J. Org. Chem. 2006; 71: 4565
  • 12 For a recent example of Lindlar catalyst promoted azido reduction in the presence of alkenes, see: Ojo OS, Miranda O, Baumgardner KC, Bugarin A. Org. Biomol. Chem. 2018; 16: 9354
    • 13a List B. J. Am. Chem. Soc. 2002; 124: 5656
    • 13b Bøgevig A, Juhl K, Kumaragurubaran N, Zhuang W, Jørgensen KA. Angew. Chem. Int. Ed. 2002; 41: 1790

    • For a review, see:
    • 13c Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471

    • For a recent review covering advances in asymmetric catalysis by proline and its derivatives, see:
    • 13d Liu J, Wang L. Synthesis 2017; 49: 960
  • 14 Waser J, Gasper B, Nambu H, Carreira EM. J. Am. Chem. Soc. 2006; 128: 11693

    • For examples of the use of DBAD as an amination reagent in enamine-catalysed reactions, see:
    • 15a Oelke AJ, Kumarn S, Longbottom DA, Ley SV. Synlett 2006; 2548
    • 15b Umbreen S, Brockhaus M, Ehrenberg H, Schmidt B. Eur. J. Org. Chem. 2006; 4585
    • 15c Kurkin AV, Utkina AA, Yurovskaya MA. Chem. Heterocycl. Compd. 2008; 44: 106
    • 15d Makino K, Kubota S, Hara S, Sakaguchi M, Hamajima A, Hamada Y. Tetrahedron 2009; 65: 9468
    • 15e Shigenaga A, Yamamoto J, Nishioka N, Otaka A. Tetrahedron 2010; 66: 7367
    • 15f Kalch D, Youcef RA, Moreau X, Thomassigny C, Greck C. Tetrahedron: Asymmetry 2010; 21: 2302
    • 15g Bouvet S, Moreau X, Coeffard V, Greck C. J. Org. Chem. 2013; 78: 427
    • 15h Shmatova OI, Nenajdenko VG. J. Org. Chem. 2013; 78: 9214
    • 15i Radhika L, Chandrasekhar S. Synth. Commun. 2014; 44: 3602
    • 15j Liu C, Weng J, Lin Z.-H, Huang W.-J, Guo J, Huang L.-J, Lu G. Tetrahedron: Asymmetry 2017; 28: 41
  • 16 The TFA-mediated deprotection of 12 gave less satisfactory results than the use of HCl due to partial hydrazine acylation.
  • 17 Wang P, Luo Y, Zhu S, Lu D, Gong Y. Adv. Synth. Catal. 2019; 361: 5565
  • 18 Pico A, Moyano A, Pericas MA. J. Org. Chem. 2003; 68: 5075
  • 19 Seehafer K, Malakar CC, Bender M, Qu J, Liang C, Helmchen G. Eur. J. Org. Chem. 2016; 493
  • 20 Doherty W, Adler N, Butler TJ, Knox A, Evans P. Bioorg. Med. Chem. 2020; 28: 115774
  • 21 Yamamura S, Toda M, Hirata Y. Org. Synth. 1973; 53: 86