Synthesis, Inhaltsverzeichnis Synthesis 2023; 55(11): 1616-1641DOI: 10.1055/s-0040-1720035 review Special Issue dedicated to Prof. Cristina Nevado, recipient of the 2021 Dr. Margaret Faul Women in Chemistry Award SO2-Extrusive 1,4-(Het)Aryl Migration: Synthesis of α-Aryl Amides and Related Reactions Nicolas G.-Simonian , Amandine Guérinot ∗ , Janine Cossy ∗Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract (Het)aryl migration has emerged as a key synthetic tool and has particularly been exploited for the synthesis of α-aryl amides. This method overcomes the existing α-arylation methods, which are not always compatible with the introduction of (het)aryl groups possessing bulky or electrophilic substituents. This review focuses on SO2-extrusive (het)aryl migration in the frame of α-aryl amide synthesis. Anion- and radical-mediated transformations are reported, including the synthesis of polycyclic compounds through cascade reactions. 1 Introduction 2 Anionic Aryl Migration 3 Radical Aryl Migration 4 Conclusion Key words Key wordsα-aryl amides - cascade reactions - Truce–Smiles rearrangement - anionic aryl migration - radical aryl migration - Meisenheimer complex Volltext Referenzen References 1a Fleming A. Br. J. Exp. Pathol. 1929; 10: 226 1b Ligon BL. Semin. Pediatr. Infect. Dis. 2004; 15: 52 2 Handsfield HH, Clark H, Wallace JF, Holmes KK, Turck M. Antimicrob. Agents Chemother. 1973; 3: 262 3 Hart FD, Huskisson EC. Drugs 1984; 27: 232 4a Jullian V, Quirion J.-C, Husson H.-P. Synthesis 1997; 1091 4b Honda T, Namiki H, Satoh F. Org. Lett. 2001; 3: 631 4c Wang M.-X, Zhao S.-M. Tetrahedron Lett. 2002; 43: 6617 5a Shaughnessy KH, Hamann BC, Hartwig JF. J. Org. Chem. 1998; 63: 6546 5b Culkin DA, Hartwig JF. Acc. Chem. Res. 2003; 36: 234 5c Cossy J, de Filippis A, Gomez-Pardo D. Org. Lett. 2003; 5: 3037 5d Johansson CC. C, Colacot TJ. Angew. Chem. Int. Ed. 2010; 49: 676 5e Bellina F, Rossi R. Chem. Rev. 2010; 110: 1082 5f Zheng B, Jia T, Walsh PJ. Org. Lett. 2013; 15: 4190 5g Zheng B, Jia T, Walsh PJ. Adv. Synth. Catal. 2014; 356: 165 See for example: 6a Hama T, Liu X, Culkin DA, Hartwig JF. J. Am. Chem. Soc. 2003; 125: 11176 6b Hama T, Liu X, Culkin DA, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 4976 6c Cossy J, de Filippis A, Gomez-Pardo D. Org. Lett. 2003; 5: 3037 6d Cossy J, de Filippis A, Gomez-Pardo D. Synlett 2003; 2171 6e de Filippis A, Gomez-Pardo D, Cossy J. Synthesis 2004; 2930 6f Hlavinka ML, Hagadorn JR. Organometallics 2007; 26: 4105 6g Michon C, Béthegnies A, Capet F, Roussel P, de Filippis A, Gomez-Pardo D, Cossy J, Agbossou-Niedercorn F. Eur. J. Org. Chem. 2013; 4979 7a Gooßen LJ. Chem. Commun. 2001; 669 7b Duan Y.-Z, Deng M.-Z. Tetrahedron Lett. 2003; 44: 3423 7c Fischer C, Fu GC. J. Am. Chem. Soc. 2005; 127: 4594 7d Strotman NA, Sommer S, Fu GC. Angew. Chem. Int. Ed. 2007; 46: 3556 7e Liu C, He C, Shi W, Chen M, Lei A. Org. Lett. 2007; 9: 5601 7f Lundin PM, Fu GC. J. Am. Chem. Soc. 2010; 132: 11027 7g Jin M, Nakamura M. Chem. Lett. 2011; 40: 1012 7h Tarui A, Shinohara S, Sato K, Omote M, Ando A. Org. Lett. 2016; 18: 1128 7i Barde E, Guérinot A, Cossy J. Org. Lett. 2017; 19: 6068 7j Li J, Berger M, Zawodny W, Simaan M, Maulide N. Chem 2019; 5: 1883 7k Koch V, Lorion MM, Barde E, Bräse S, Cossy J. Org. Lett. 2019; 21: 6241 7l Lorion MM, Koch V, Nieger M, Chen H.-Y, Lei A, Bräse S, Cossy J. Chem. Eur. J. 2020; 26: 13163 8 A cross-electrophile cross-coupling leading to imide arylation has also been described, see: Durandetti M, Périchon J, Nédelec J.-Y. J. Org. Chem. 1997; 62: 7914 9a Loven R, Speckamp WN. Tetrahedron Lett. 1972; 13: 1567 9b Köhler JJ, Speckamp WN. Tetrahedron Lett. 1977; 18: 631 9c Köhler JJ, Speckamp WN. Tetrahedron Lett. 1977; 18: 635 Seminal work on aryl migration: 10a Henriques R. Ber. Deutsch. Chem. Ges. 1894; 27: 2993 10b Hinsberg O. J. Prakt. Chem. 1914; 90: 345 10c Hinsberg O. J. Prakt. Chem. 1915; 91: 307 10d Wieland H. Chem. Ber. 1911; 44: 2550 10e Warren LA, Smiles S. J. Chem. Soc. 1930; 1327 10f Levy AA, Rains HC, Smiles S. J. Chem. Soc. 1931; 3264 10g Evans WJ, Smiles S. J. Chem. Soc. 1935; 181 10h Evans WJ, Smiles S. J. Chem. Soc. 1936; 329 10i Urry WH, Kharasch MS. J. Am. Chem. Soc. 1944; 66: 1438 Previous reviews on aryl migration: 11a Studer A, Bossart M. Tetrahedron 2001; 57: 9649 11b Snape TJ. Chem. Soc. Rev. 2008; 37: 2452 11c Chen Z.-M, Zhang X.-M, Tu Y.-Q. Chem. Soc. Rev. 2015; 44: 5220 11d Allart-Simon I, Gérard S, Sapi J. Molecules 2016; 21: 878 11e Holden CM, Greaney MF. Chem. Eur. J. 2017; 23: 8992 11f Henderson AR. P, Kosowan JR, Wood TE. Can. J. Chem. 2017; 95: 483 11g Li W, Xu W, Xie J, Yu S, Zhu C. Chem. Soc. Rev. 2018; 47: 654 11h Whalley DM, Greaney MF. Synthesis 2022; 54: 1908 Book chapters: 11i Plesniak K, Zarecki A, Wicha J. In Sulfur-Mediated Rearrangements II . In Topics in Current Chemistry, Vol. 275. Schaumann E. Springer; Heidelberg: 2007: 163-250 11j Li JJ. Name Reactions . Springer; Heidelberg: 2009: 511-514 11k Kürti L, Czakó B. Strategic Applications of Named Reactions in Organic Synthesis. Elsevier; New York: 2005: 416-417 12a In contrast, when some CO extrusive radical aryl migrations were attempted starting from acrylimides, a 1,6-addition of the radical on the aryl group was favored over the ipso addition.12b 12b Li L, Deng M, Zheng S.-C, Xiong Y.-P, Tan B, Liu X.-Y. Org. Lett. 2014; 16: 504 13 To gain in concision, the fragmentation and loss of SO2 are generally represented as a single step but the two processes are not concerted. 14 Lennox AJ. J. Angew. Chem. Int. Ed. 2018; 57: 14686 15a Bernasconi CF, Gehriger CL. J. Am. Chem. Soc. 1974; 96: 1092 15b Sekiguchi S, Okada K. J. Org. Chem. 1975; 40: 2782 15c Knipe AC, Lound-Keast J, Sridhar N. J. Chem. Soc., Chem. Commun. 1976; 765 15d Okada K, Sekiguchi S. J. Org. Chem. 1978; 43: 441 15e Knipe AC, Sridhar N, Lound-Keast J. Tetrahedron Lett. 1979; 20: 2541 15f Knipe AC, Sridhar N. J. Chem. Soc., Chem. Commun. 1979; 791 16 Yang D, Xie C.-X, Wu X.-T, Fei L.-R, Feng L, Ma C. J. Org. Chem. 2020; 85: 14905 17 Kemnitz CR, Loewen MJ. J. Am. Chem. Soc. 2007; 129: 2521 18 Elguero J, Goya P, Rozas I, Catalán J, De Paz JL. G. J. Mol. Struct.: THEOCHEM 1989; 184: 115 19a Naito T, Dohmori R, Nagase O. Yakugaku Zasshi 1954; 74: 593 19b Naito T, Dohmori R, Sano M. Yakugaku Zasshi 1954; 74: 596 19c Naito T, Dohmori R, Shimoda M. Pharm. Bull. 1955; 3: 34 19d Naito T, Dohmori R. Pharm. Bull. 1955; 3: 38 19e Naito T, Dohmori R, Kotake T. Chem. Pharm. Bull. 1964; 12: 588 19f Dohmori R. Chem. Pharm. Bull. 1964; 12: 591 19g Dohmori R. Chem. Pharm. Bull. 1964; 12: 595 19h Dohmori R. Chem. Pharm. Bull. 1964; 12: 601 20 Barlow HL, Rabet PT. G, Durie A, Evans T, Greaney MF. Org. Lett. 2019; 21: 9033 21 Fan J.-H, Yang J, Song R.-J, Li J.-H. Org. Lett. 2015; 17: 836 22a Backer HJ, Moed HD. Recl. Trav. Chim. Pays-Bas 1947; 66: 689 22b Backer HJ, Groot J. Recl. Trav. Chim. Pays-Bas 1950; 69: 1323 23a Bordwell FG, Fried HE. J. Org. Chem. 1981; 46: 4327 23b Bordwell FG, Fried HE. J. Org. Chem. 1991; 56: 4218 24 This group had already worked on this kind of strategy with sulfonamide addition on a benzyne: Holden CM, Sohel SM. A, Greaney MF. Angew. Chem. Int. Ed. 2016; 55: 2450 See for example: 25a Cao Y, Luo C, Yang P, Li P, Wu C. Med. Chem. Res. 2021; 30: 501 25b Tandon N, Luxami V, Kant D, Tandon R, Paul K. RSC Adv. 2021; 11: 25228 26a Leardini R, Nanni D, Pedulli GF, Tundo A, Zanardi G, Foresti E, Palmieri P. J. Am. Chem. Soc. 1989; 111: 7723 26b Asensio A, Dannenberg JJ. J. Org. Chem. 2001; 66: 5996 27 Khartabil H, Doudet L, Allart-Simon I, Ponce-Vargas M, Gérard S, Hénon E. Org. Biomol. Chem. 2020; 18: 6840 28 Azzi E, Ghigo G, Parisotto S, Pellegrino F, Priola E, Renzi P, Deagostino A. J. Org. Chem. 2021; 86: 3300 29 Kong W, Casimiro M, Merino E, Nevado C. J. Am. Chem. Soc. 2013; 135: 14480 30 Authors did not write an equilibrium between the key intermediate and the spiro compound. 31 Kong W, Casimiro M, Fuentes N, Merino E, Nevado C. Angew. Chem. Int. Ed. 2013; 52: 13086 32 Zhang B, Mück-Lichtenfeld C, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2013; 52: 10792 33a Meanwell NA. J. Med. Chem. 2011; 54: 2529 33b Barillari C, Brown N. Bioisosteres in Medicinal Chemistry . Brown N. Wiley-VCH; Weinheim: 2012: pp 15-29 34 He Z, Tan P, Ni C, Hu J. Org. Lett. 2015; 17: 1838 35 Tang S, Yuan L, Deng Y.-L, Li Z.-Z, Wang L.-N, Huang G.-X, Sheng R.-L. Tetrahedron Lett. 2017; 58: 329 36 Liu K, Sui L.-C, Jin Q, Li D.-Y, Liu P.-N. Org. Chem. Front. 2017; 4: 1606 37 Zheng L, Yang C, Xu Z, Gao F, Xia W. J. Org. Chem. 2015; 80: 5730 38 Liu C, Zhang B. RSC Adv. 2015; 5: 61199 39 Biswas P, Guin J. J. Org. Chem. 2018; 83: 5629 40 Chatgilialoglu C, Crich D, Komatsu M, Ryu I. Chem. Rev. 1999; 99: 1991 41 Yu J.-T, Chen R, Zhu J, Cheng J. Org. Biomol. Chem. 2017; 15: 5476 42 Xia X.-F, Zhu S.-L, Chen C, Wang H, Liang Y.-M. J. Org. Chem. 2016; 81: 1277 43 Tan F.-L, Song R.-J, Hu M, Li J.-H. Org. Lett. 2016; 18: 3198 44 Yu J.-T, Hu W, Peng H, Cheng J. Tetrahedron Lett. 2016; 57: 4109 45 Zhang H, Pan C, Jin N, Gu Z, Hu H, Zhu C. Chem. Commun. 2015; 51: 1320 46 Zhang M, Sheng W, Ji P, Liu Y, Guo C. RSC Adv. 2015; 5: 56438 47 Li M, Wang C.-T, Bao Q.-F, Qiu Y.-F, Wei W.-X, Li X.-S, Wang Y.-Z, Zhang Z, Wang J.-L, Liang Y.-M. Org. Lett. 2021; 23: 751 48 Ni Z, Huang X, Pan Y. Org. Lett. 2016; 18: 2612 49 Caporaso R, Manna S, Zinken S, Kochnev AR, Lukyanenko ER, Kurkin AV, Antonchick AP. Chem. Commun. 2016; 52: 12486 50 Kong W, Merino E, Nevado C. Angew. Chem. Int. Ed. 2014; 53: 5078 51 Kong W, Fuentes N, García-Domínguez A, Merino E, Nevado C. Angew. Chem. Int. Ed. 2015; 54: 2487 52 Wang J.-L, Liu M.-L, Zou J.-Y, Sun W.-H, Liu X.-Y. Org. Lett. 2022; 24: 309 53a Shi L, Wang H, Yang H, Fu H. Synlett 2015; 26: 688 53b Qiu J.-K, Hao W.-J, Kong L.-F, Ping W, Tu S.-J, Jiang B. Tetrahedron Lett. 2016; 57: 2414 54 Hervieu C, Kirillova MS, Suárez T, Müller M, Merino E, Nevado C. Nat. Chem. 2021; 13: 327 For some studies highlighting the aromatization of N-substituted cyclohexadienyl derivatives through C–N fragmentation, see: 55a Kemper J, Studer A. Angew. Chem. Int. Ed. 2005; 44: 4914 55b Guin J, Mück-Lichtenfeld C, Grimme S, Studer A. J. Am. Chem. Soc. 2007; 129: 4498 56a Niu B, Xie P, Zhao W, Zhou Y, Bian Z, Pittman CU. Jr, Zhou A. RSC Adv. 2014; 4: 43525 56b Niu B, Xie P, Bian Z, Zhao W, Zhang M, Zhou Y, Feng L, Pittman CU. Jr, Zhou A. Synlett 2015; 26: 635 56c Wang H, Sun S, Cheng J. Org. Lett. 2017; 19: 5844 57 Fuentes N, Kong W, Fernández-Sánchez L, Merino E, Nevado C. J. Am. Chem. Soc. 2015; 137: 964 For similar cascade reactions, see: 58a Su X, Huang H, Hong W, Cui J, Yu M, Li Y. Chem. Commun. 2017; 53: 13324 58b Huang H, Li Y. J. Org. Chem. 2017; 82: 4449 59 Hu M, Guo L.-Y, Han Y, Tan F.-L, Song R.-J, Li J.-H. Chem. Commun. 2017; 53: 6081 60a Clark AJ, Coles SR, Collis A, Debure T, Guy C, Murphy NP, Wilson P. Tetrahedron Lett. 2009; 50: 5609 60b Clark AJ, Coles SR, Collis A, Fullaway DR, Murphy NP, Wilson P. Tetrahedron Lett. 2009; 50: 6311 61 Clark AJ, Cornia A, Felluga F, Gennaro A, Ghelfi F, Isse AA, Menziani MC, Muniz-Miranda F, Roncaglia F, Spinelli D. Eur. J. Org. Chem. 2014; 6734 62 Konkolewicz D, Wang Y, Zhong M, Krys P, Isse AA, Gennaro A, Matyjaszewski K. Macromolecules 2013; 46: 8749 63 Isse AA, Bortolamei N, De Paoli P, Gennaro A. Electrochim. Acta 2013; 110: 655 64 Chuang C.-P, Chen Y.-Y, Chuang T.-H, Yang C.-H. Synthesis 2017; 49: 1273 65 Kyne SH, Lefèvre G, Ollivier C, Petit M, Cladera V.-AR, Fensterbank L. Chem. Soc. Rev. 2020; 49: 8501 66 Gillaizeau-Simonian N, Barde E, Guérinot A, Cossy J. Chem. Eur. J. 2021; 27: 4004 67 The reactions were conducted at 100 °C in THF under pressure in sealed tubes. 68a Zeitler K. Angew. Chem. Int. Ed. 2009; 48: 9785 68b Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527 68c Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102 68d Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828 68e Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617 68f Pagire SK, Föll T, Reiser O. Acc. Chem. Res. 2020; 53: 782 69 Li Y, Hu B, Dong W, Xie X, Wan J, Zhang Z. J. Org. Chem. 2016; 81: 7036 70a Flamigni L, Barbieri A, Sabatini C, Ventura B, Barigelletti F. In Photochemistry and Photophysics of Coordination Compounds II . In Topics in Current Chemistry, Vol. 281. Balzani V, Campagna S. Springer; Heidelberg: 2007: 143-203 70b Nguyen JD, D’Amato EM, Narayanam JM. R, Stephenson CR. J. Nat. Chem. 2012; 4: 854 71 Gao X, Li C, Yuan Y, Xie X, Zhang Z. Org. Biomol. Chem. 2020; 18: 263 72 Radhoff N, Studer A. Angew. Chem. Int. Ed. 2021; 60: 3561 73a Waldau E, Pütter R. Angew. Chem. Int. Ed. 1972; 11: 826 73b Johnson S, Kovács E, Greaney MF. Chem. Commun. 2020; 56: 3222 74a Bacqué E, El Qacemi M, Zard SZ. Org. Lett. 2005; 7: 3817 74b Chen Y.-R, Duan W.-L. J. Am. Chem. Soc. 2013; 135: 16754 75 The prevalence of this 1,6-addition over extrusive 1,4-aryl migration through ipso addition could be due to geometric factors, the N–C(O)–Ar angle for an imide should be of ca. 120° whereas the N–S(O)2–Ar angle for a sulfonimide should be of ca. 109°, according to VSEPR theory.