Synthesis 2022; 54(15): 3341-3350
DOI: 10.1055/s-0040-1719913
feature

External-Ligand-Free, Nickel-Catalyzed Alkenylation of N-Sulfonylamines with Internal Alkynes

Jia-Yue Li
a   Zhejiang University, Hangzhou 310027, Zhejiang Province, P. R. of China
b   Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, P. R. of China
,
Lun Li
b   Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, P. R. of China
,
Yun-Zhi Lin
b   Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, P. R. of China
,
Hang Shi
b   Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, P. R. of China
c   Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, P. R. of China
› Author Affiliations
This work was supported by the ‘Pioneer’ and ‘Leading Goose’ R & D Program of Zhejiang (2022SDXHDX0006) and the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (2020R01004).


Abstract

Allylic amines were synthesized via a nickel-catalyzed coupling reaction between various N-sulfonylamines and internal alkynes. The catalytic reaction was by-product-free and proceeded without the need for additional oxidant/reductant or activating reagent. As improvements over established methods, the present approach avoids the need for an external ligand, which increases the value of the approach with respect to atom economy, and it uses bench-stable Ni(II)Br2(dme) instead of Ni(0)(COD)2 as the source of the nickel catalyst. Mechanistic studies revealed that a catalytic amount of a strong base (i.e., KO t Bu) was essential for the formation of active Ni(0) catalyst, which, along with an imine intermediate, then initiated the catalytic cycle.

Supporting Information



Publication History

Received: 18 January 2022

Accepted after revision: 18 February 2022

Article published online:
20 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Petranyi G, Ryder NS, Stütz A. Science 1984; 224: 1239
    • 1b Johannsen M, Jørgensen KA. Chem. Rev. 1998; 98: 1689
    • 1c Skoda EM, Davis GC, Wipf P. Org. Process Res. Dev. 2012; 16: 26
    • 2a Jensen M, Livinghouse T. J. Am. Chem. Soc. 1989; 111: 4495
    • 2b Takai K, Miwatashi S, Kataoka Y, Utimoto K. Chem. Lett. 1992; 99
    • 2c Denmark SE, Nakajima N, Nicaise O JC. J. Am. Chem. Soc. 1994; 116: 8797
    • 2d Gao Y, Harada K, Sato F. Tetrahedron Lett. 1995; 36: 5913
    • 2e Petasis NA, Zavialov IA. J. Am. Chem. Soc. 1997; 119: 445
    • 2f Wipf P, Kendall C, Stephenson CR. J. J. Am. Chem. Soc. 2001; 123: 5122
    • 3a Brak K, Ellman JA. J. Am. Chem. Soc. 2009; 131: 3850
    • 3b Luo YF, Carnell AJ, Lam HW. Angew. Chem., Int. Ed. 2012; 51: 6762
    • 3c Gopula B, Chiang CW, Lee WZ, Kuo TS, Wu PY, Henschke JP, Wu HL. Org. Lett. 2014; 16: 632
    • 3d Cui Z, Chen YJ, Gao WY, Feng CG, Lin GQ. Org. Lett. 2014; 16: 1016
    • 4a Patel SJ, Jamison TF. Angew. Chem. Int. Ed. 2003; 42: 1364
    • 4b Patel SJ, Jamison TF. Angew. Chem. Int. Ed. 2004; 43: 3941
    • 4c Ogoshi S, Ikeda H, Kurosawa H. Angew. Chem. Int. Ed. 2007; 46: 4930
    • 4d Zhou C.-Y, Zhu S.-F, Wang LX, Zhou Q.-L. J. Am. Chem. Soc. 2010; 132: 10955
    • 4e Yao W.-W, Li R, Li J.-F, Sun J, Ye MC. Green Chem. 2019; 21: 2240
    • 5a Kong JR, Cho CW, Krische MJ. J. Am. Chem. Soc. 2005; 127: 11269
    • 5b Skucas E, Kong JR, Krische MJ. J. Am. Chem. Soc. 2007; 129: 7242
    • 6a Barchuk A, Ngai MY, Krische MJ. J. Am. Chem. Soc. 2007; 129: 8432
    • 6b Ngai MY, Barchuk A, Krische MJ. J. Am. Chem. Soc. 2007; 129: 12644
    • 7a Xiao L.-J, Zhao C.-Y, Cheng L, Feng B.-Y, Feng W.-M, Xie J.-H, Xu X.-F, Zhou Q.-L. Angew. Chem. Int. Ed. 2018; 57: 3396

    • For selected examples of nickel-catalyzed α-alkylation reactions with olefin, see:
    • 7b Shirataki H, Ono T, Ohashi M, Ogoshi S. Org. Lett. 2019; 21: 851
    • 7c Ashida K, Hoshimoto Y, Tohnai N, Scott DE, Ohashi M, Imaizumi H, Tsuchiya Y, Ogoshi S. J. Am. Chem. Soc. 2020; 142: 1594
  • 8 Buchwald SL, Watson BT, Wannamaker MW, Dewan JC. J. Am. Chem. Soc. 1989; 111: 4486
  • 9 Bahena N, Griffin SE, Schafer LL. J. Am. Chem. Soc. 2020; 142: 20566
  • 10 Kaper T, Fischer M, Thye H, Geik D, Schmidtmann M, Beckhaus R, Doye S. Chem. Eur. J. 2021; 27: 6899
  • 11 Tsuchikama K, Kasagawa M, Endo K, Shibata T. Org. Lett. 2009; 11: 1821
    • 12a Eisch JJ, Galle JE. J. Organomet. Chem. 1975; 96: C23
    • 12b Eisch JJ, Damasevitz GA. J. Organomet. Chem. 1975; 96: C19
    • 12c Montgomery J. Acc. Chem. Res. 2000; 33: 46
    • 12d Montgomery J. Angew. Chem. Int. Ed. 2004; 43: 3890
  • 13 Li L, Liu Y.-C, Shi H. J. Am. Chem. Soc. 2021; 143: 4154
  • 14 Yao WW, Li R, Chen H, Chen MK, Luan YX, Wang Y, Yu ZX, Ye MC. Nat. Commun. 2021; 12:  3800
    • 15a Cheng L, Li M, Xiao LL, Xie JH, Zhou QL. J. Am. Chem. Soc. 2018; 140: 11627
    • 15b He Y, Liu C, Yu L, Zhu SL. Angew. Chem. Int. Ed. 2020; 58: 9186
    • 16a Kimura M, Tatsuyama Y, Kojima K, Tamaru Y. Org. Lett. 2007; 9: 1871
    • 16b Li YQ, Shi SL. Organometallics 2021; 40: 2345
    • 17a Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision C.01 . Gaussian, Inc; Wallingford CT: 2016
    • 17b Neese F. WIREs Comput. Mol. Sci. 2012; 2: 73
    • 17c Neese F, Wennmohs F, Becker U, Riplinger C. J. Chem. Phys. 2020; 152: 224108
    • 17d Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005; 7: 3297
    • 17e Adamo C, Barone V. J. Chem. Phys. 1999; 110: 6158
    • 17f Grimme S, Ehrlich S, Goerigk L. J. Comput. Chem. 2011; 32: 1456
    • 17g Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys. 2010; 132: 154104
    • 17h Marenich AV, Cramer CJ, Truhlar DG. J. Phys. Chem. B 2009; 113: 6378
    • 17i Chai D.-J, Gordon MH. J. Chem. Phys. 2009; 131: 174105