Synthesis 2022; 54(13): 2991-3004
DOI: 10.1055/s-0040-1719908
short review

Epoxydibenzo[b,f][1,5]diazocines: From a Hidden Structural Motif to an Efficient Solvent-Free Synthetic Protocol

,
,
,
Financial support for this work was provided by Narodowe Centrum Nauki (the Polish National Science Centre; Grant SONATA BIS 2017/26/E/ST5/00510).


Abstract

Epoxydiazocines belong to the rare class of small V-shaped molecules, closely related to Tröger’s base. Due to their intriguing, unique structure, they could serve as molecular building blocks for supramolecular chemistry. An extensive review on their synthesis is contained in this article. Moreover, our recent findings devoted to efficient and easily scalable synthesis of fluorinated epoxy[1,5][b,f]diazocines through solvent-free base-catalyzed condensation of ortho-aminophenones is provided. The unique V-shaped structure was confirmed by X-ray crystal structure analysis. Furthermore, the rigidity of the epoxy­diazocine skeleton allowed for racemate separation and the configuration of enantiomers was established by combining quantum chemical calculations and chiroptical methods.

1 Introduction

2 Synthetic Efforts Towards Epoxydibenzo[b,f][1,5]diazocines

3 Synthetic Efforts Towards Fluorinated Epoxydibenzo[b,f][1,5]diazocines

4 Conclusion



Publication History

Received: 16 December 2021

Accepted after revision: 14 February 2022

Article published online:
14 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Selected examples:
    • 1a Engelhard DM, Freye S, Grohe K, John M, Clever GH. Angew. Chem. Int. Ed. 2012; 51: 4747
    • 1b Gutiérrez-Blanco A, Ibáñez S, Hahn FE, Poyatos M, Peris E. Organometallics 2019; 38: 4565
    • 1c Mejuto C, Escobar L, Guisado-Barrios G, Ballester P, Gusev D, Peris E. Chem. Eur. J. 2017; 23: 10644
    • 1d Shanmugaraju S, Hawes CS, Savyasachi AJ, Blasco S, Kitchen JA, Gunnlaugsson T. Chem. Commun. 2017; 53: 12512
    • 1e Ibáñez S, Poyatos M, Peris E. Acc. Chem. Res. 2020; 53: 1401
    • 1f Jans AC. H, Caumes X, Reek JN. H. ChemCatChem 2019; 11: 287
    • 1g Han M, Engelhard DM, Clever GH. Chem. Soc. Rev. 2014; 43: 1848
    • 1h Krykun S, Dekhtiarenko M, Canevet D, Carré V, Aubriet F, Levillain E, Allain M, Voitenko Z, Sallé M, Goeb S. Angew. Chem. Int. Ed. 2020; 59: 716
    • 1i Han Y, Tian Y, Li Z, Wang F. Chem. Soc. Rev. 2018; 47: 5165
    • 2a Tröger J. J. Prakt. Chem. 1887; 36: 225
    • 2b Parrino B, Cascioferro S, Carbone D, Cirrincione G, Diana P. Eight-Membered Rings With Two Heteroatoms . In Comprehensive Heterocyclic Chemistry IV, Chap. 14.07, Vol. 14. Black DS, Cossy J, Stevens CV. Elsevier; Oxford: 2022: 285-471
  • 3 Spielman MA. J. Am. Chem. Soc. 1935; 57: 583
  • 4 Rúnarsson ÖV, Artacho J, Wärnmark K. Eur. J. Org. Chem. 2012; 2012: 7015
  • 5 Seidel F. Ber. Dtsch. Chem. Ges. 1926; 59: 1894
  • 6 Posner T. Ber. Dtsch. Chem. Ges. 1898; 31: 656
    • 7a Bamberger E, Demuth E. Ber. Dtsch. Chem. Ges. 1901; 34: 1309
    • 7b Bamberger E, Demuth E. Ber. Dtsch. Chem. Ges. 1903; 36: 829
    • 7c Bamberger E. Ber. Dtsch. Chem. Ges. 1903; 36: 2042
    • 7d Bamberger E. Ber. Dtsch. Chem. Ges. 1927; 60: 314
  • 8 Seidel F, Dick W. Ber. Dtsch. Chem. Ges. 1927; 60: 2018
  • 9 McGeachin SG. Can. Chem. News 1966; 44: 2323
  • 10 Frank KE, Aubé J. Tetrahedron Lett. 1998; 39: 7239
  • 11 Mao D, Tang J, Wang W, Wu S, Liu X, Yu J, Wang L. J. Org. Chem. 2013; 78: 12848
  • 12 Muthukrishnan I, Karuppasamy M, Nagarajan S, Maheswari CU, Pace V, Menéndez JC, Sridharan V. J. Org. Chem. 2016; 81: 9687
  • 13 Chen Y, Li S, Hou S, Xu J, Yang Z. J. Org. Chem. 2020; 85: 3709
  • 14 Michalak M, Bisek B, Nowacki M, Górecki M. J. Org. Chem. 2021; 86: 8955
  • 15 Mannich C, Wieder H. Ber. Dtsch. Chem. Ges. 1932; 65: 385
  • 16 Wiliams MW. US 3503939 A, 1970
  • 17 Johnson PY, Silver RB, Davis MM. J. Org. Chem. 1973; 38: 3753
  • 18 Möhrle H, Schnädelbach D. Arch. Pharm. 1975; 308: 783
  • 19 Albert A, Yamamoto H. J. Chem. Soc. C 1968; 1944
    • 20a Eichler E, Rooney CS, Williams HW. R. J. Heterocycl. Chem. 1976; 13: 841
    • 20b Eichler E, Rooney CS, Williams HW. R. J. Heterocycl. Chem. 1976; 13: 43
  • 21 Nagarajan K, Rodrigues PJ, Go K, Parthasarathy R. Tetrahedron Lett. 1992; 33: 6011
  • 22 Faraj FL, Khaledi H, Karimian H, Ali HM. J. Heterocycl. Chem. 2017; 54: 2071
    • 23a Wieland H, Bähr K, Witkop B. Justus Liebigs Ann. Chem. 1941; 547: 156
    • 23b Karrer P, Schmid H. Helv. Chim. Acta 1946; 29: 1853
  • 24 Metlesics W, Anton T, Sternbach LH. J. Heterocycl. Chem. 1967; 4: 435
  • 25 Stefanovic G, Lorenc L, Mamuzić RI, Mihailović ML. Tetrahedron 1959; 6: 304
  • 26 Bernauer K. Helv. Chim. Acta 1963; 46: 197
  • 27 Fritz H, Rubach G. Justus Liebigs Ann. Chem. 1968; 715: 135
  • 28 Fritz H, Eggers SH. Justus Liebigs Ann. Chem. 1970; 736: 33
  • 29 Chinkov N, Warm A, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 2957
  • 30 Griffiths GJ, Warm A. Org. Process Res. Dev. 2016; 20: 803
  • 31 Shidlovskii AF, Golubev AS, Gusev DV, Suponitsky KY, Peregudov AS, Chkanikov ND. J. Fluorine Chem. 2012; 143: 272
  • 32 Wang Y, Ai J, Liu G, Geng M, Zhang A. Org. Biomol. Chem. 2011; 9: 5930
  • 33 Czerwiński P, Michalak M. J. Org. Chem. 2017; 82: 7980
  • 34 Gómez-Suárez A, Ramón RS, Songis O, Slawin AM. Z, Cazin CS. J, Nolan SP. Organometallics 2011; 30: 5463
  • 35 Tsushima T, Tanaka H, Nakanishi K, Nakamoto M, Yoshida H. ACS Catal. 2021; 11: 14381
  • 36 Clavier H, Nolan SP. Chem. Commun. 2010; 46: 841
  • 37 Díez-González S, Nolan SP. Angew. Chem. Int. Ed. 2008; 47: 8881
    • 38a Science of Synthesis: Water in Organic Synthesis . Kobayashi S. Georg Thieme Verlag; Stuttgart: 2012
    • 38b Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless KB. Angew. Chem. Int. Ed. 2005; 44: 3275
    • 39a Guo Q.-H, Zhou J, Mao H, Qiu Y, Nguyen MT, Feng Y, Liang J, Shen D, Li P, Liu Z, Wasielewski MR, Stoddart JF. J. Am. Chem. Soc. 2020; 142: 5419
    • 39b Cetin MM, Beldjoudi Y, Roy I, Anamimoghadam O, Bae YJ, Young RM, Krzyaniak MD, Stern CL, Philp D, Alsubaie FM, Wasielewski MR, Stoddart JF. J. Am. Chem. Soc. 2019; 141: 18727
    • 39c Kosiorek S, Rosa B, Boinski T, Butkiewicz H, Szymański MP, Danylyuk O, Szumna A, Sashuk V. Chem. Commun. 2017; 53: 13320
    • 39d Strutt NL, Zhang H, Schneebeli ST, Stoddart JF. Acc. Chem. Res. 2014; 47: 2631
    • 40a Makosza M. Pure Appl. Chem. 2000; 72: 1399
    • 40b Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
    • 40c Qian D, Sun J. Chem. Eur. J. 2019; 25: 3740
    • 40d Krištofíková D, Modrocká V, Mečiarová M, Šebesta R. ChemSusChem 2020; 13: 2828
    • 40e Rössler SL, Jelier BJ, Magnier E, Dagousset G, Carreira EM, Togni A. Angew. Chem. Int. Ed. 2020; 59: 9264
  • 41 Matos MJ, Navo CD, Hakala T, Ferhati X, Guerreiro A, Hartmann D, Bernardim B, Saar KL, Compañón I, Corzana F, Knowles TP. J, Jiménez-Osés G, Bernardes GJ. L. Angew. Chem. Int. Ed. 2019; 58: 6640
  • 42 Sabot C, Kumar KA, Meunier S, Mioskowski C. Tetrahedron Lett. 2007; 48: 3863
  • 43 Polavarapu PL. Molecules 2016; 21: 1056
  • 44 Górecki M, Frelek J. Trends Anal. Chem. 2021; 144: 116428
  • 45 Mándi A, Kurtán T. Nat. Prod. Rep. 2019; 36: 889
  • 46 Superchi S, Scafato P, Górecki M, Pescitelli G. Curr. Med. Chem. 2018; 25: 287
  • 47 Pescitelli G, Bruhn T. Chirality 2016; 28: 466