Synthesis 2020; 52(17): 2521-2527
DOI: 10.1055/s-0040-1707400
psp
© Georg Thieme Verlag Stuttgart · New York

A Facile Synthesis of Ligands for the von Hippel–Lindau E3 Ligase

a   Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany   Email: guetschow@uni-bonn.de
,
Sabine Anna Voell
a   Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany   Email: guetschow@uni-bonn.de
,
Lan Phuong Vu
a   Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany   Email: guetschow@uni-bonn.de
,
Aleša Bricelj
b   Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
,
b   Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
,
Gregor Schnakenburg
c   Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
,
a   Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany   Email: guetschow@uni-bonn.de
› Author Affiliations
I.S. acknowledges funding by the Javna Agencija za Raziskovalno Dejavnost RS [Slovenian Research Agency (ARRS)] through research core funding No. P1-0208.
Further Information

Publication History

Received: 05 March 2020

Accepted after revision: 06 May 2020

Publication Date:
27 May 2020 (online)


Abstract

The proteolysis-targeting chimeras (PROTACs) have become an integral part of different stages of drug discovery. This growing field, therefore, benefits from advancements in all segments of the design of these compounds. Herein, an efficient and optimized synthetic protocol to various von Hippel-Lindau (VHL) ligands is presented, which enables easy access to multigram quantities of these essential PROTAC building blocks. Moreover, the elaborated synthesis represents a straightforward approach to further explore the chemical space of VHL ligands.

Supporting Information

 
  • References

    • 2a Zengerle M, Chan K.-H, Ciulli A. ACS Chem. Biol. 2015; 10: 1770
    • 2b Lai AC, Toure M, Hellerschmied D, Salami J, Jaime-Figueroa S, Ko E, Hines J, Crews CM. Angew. Chem. Int. Ed. 2016; 55: 807
    • 2c Gadd MS, Testa A, Lucas X, Chan K.-H, Chen W, Lamont DJ, Zengerle M, Ciulli A. Nat. Chem. Biol. 2017; 13: 514
    • 2d Schiedel M, Herp D, Hammelmann S, Swyter S, Lehotzky A, Robaa D, Oláh J, Ovádi J, Sippl W, Jung M. J. Med. Chem. 2018; 61: 482
    • 2e Steinebach C, Kehm H, Lindner S, Vu LP, Köpff S, López Mármol Á, Weiler C, Wagner KG, Reichenzeller M, Krönke J, Gütschow M. Chem. Commun. 2019; 55: 1821
    • 2f Testa A, Hughes SJ, Lucas X, Wright JE, Ciulli A. Angew. Chem. Int. Ed. 2020; 59: 1727
    • 2g Steinebach C, Ng YL. D, Sosič I, Lee C.-S, Chen S, Lindner S, Vu LP, Bricelj A, Haschemi R, Monschke M, Steinwarz E, Wagner KG, Bendas G, Luo J, Gütschow M, Krönke J. Chem. Sci. 2020; 11: 3474
    • 3a Khan S, Zhang X, Lv D, Zhang Q, He Y, Zhang P, Liu X, Thummuri D, Yuan Y, Wiegand JS, Pei J, Zhang W, Sharma A, McCurdy CR, Kuruvilla VM, Baran N, Ferrando AA, Kim Y, Rogojina A, Houghton PJ, Huang G, Hromas R, Konopleva M, Zheng G, Zhou D. Nat. Med. 2019; 25: 1938
    • 3b Farnaby W, Koegl M, Roy MJ, Whitworth C, Diers E, Trainor N, Zollman D, Steurer S, Karolyi-Oezguer J, Riedmueller C, Gmaschitz T, Wachter J, Dank C, Galant M, Sharps B, Rumpel K, Traxler E, Gerstberger T, Schnitzer R, Petermann O, Greb P, Weinstabl H, Bader G, Zoephel A, Weiss-Puxbaum A, Ehrenhöfer-Wölfer K, Wöhrle S, Boehmelt G, Rinnenthal J, Arnhof H, Wiechens N, Wu M.-Y, Owen-Hughes T, Ettmayer P, Pearson M, McConnell DB, Ciulli A. Nat. Chem. Biol. 2019; 15: 672
    • 4a Lohbeck J, Miller AK. Bioorg. Med. Chem. Lett. 2016; 26: 5260
    • 4b Papatzimas J, Gorobets E, Brownsey D, Maity R, Bahlis N, Derksen D. Synlett 2017; 28: 2881
    • 4c Wurz RP, Dellamaggiore K, Dou H, Javier N, Lo M.-C, McCarter JD, Mohl D, Sastri C, Lipford JR, Cee VJ. J. Med. Chem. 2018; 61: 453
    • 4d Qiu X, Sun N, Kong Y, Li Y, Yang X, Jiang B. Org. Lett. 2019; 21: 3838
    • 4e Steinebach C, Sosič I, Lindner S, Bricelj A, Kohl F, Ng YL. D, Monschke M, Wagner KG, Krönke J, Gütschow M. Med. Chem. Commun. 2019; 10: 1037
    • 5a Frost J, Galdeano C, Soares P, Gadd MS, Grzes KM, Ellis L, Epemolu O, Shimamura S, Bantscheff M, Grandi P, Read KD, Cantrell DA, Rocha S, Ciulli A. Nat. Commun. 2016; 7: 13312
    • 5b Soares P, Gadd MS, Frost J, Galdeano C, Ellis L, Epemolu O, Rocha S, Read KD, Ciulli A. J. Med. Chem. 2018; 61: 599
    • 5c Testa A, Lucas X, Castro GV, Chan K.-H, Wright JE, Runcie AC, Gadd MS, Harrison WT. A, Ko E.-J, Fletcher D, Ciulli A. J. Am. Chem. Soc. 2018; 140: 9299
    • 5d Soares P, Lucas X, Ciulli A. Bioorg. Med. Chem. 2018; 26: 2992
    • 5e Lucas X, Van Molle I, Ciulli A. J. Med. Chem. 2018; 61: 7387
    • 5f de Castro GV, Ciulli A. Chem. Commun. 2019; 55: 1482
    • 5g Han X, Wang C, Qin C, Xiang W, Fernandez-Salas E, Yang C.-Y, Wang M, Zhao L, Xu T, Chinnaswamy K, Delproposto J, Stuckey J, Wang S. J. Med. Chem. 2019; 62: 941
    • 6a Maniaci C, Hughes SJ, Testa A, Chen W, Lamont DJ, Rocha S, Alessi DR, Romeo R, Ciulli A. Nat. Commun. 2017; 8: 830
    • 6b Zoppi V, Hughes SJ, Maniaci C, Testa A, Gmaschitz T, Wieshofer C, Koegl M, Riching KM, Daniels DL, Spallarossa A, Ciulli A. J. Med. Chem. 2019; 62: 699
    • 6c Smith BE, Wang SL, Jaime-Figueroa S, Harbin A, Wang J, Hamman BD, Crews CM. Nat. Commun. 2019; 10: 131
  • 7 Galdeano C, Gadd MS, Soares P, Scaffidi S, Van Molle I, Birced I, Hewitt S, Dias DM, Ciulli A. J. Med. Chem. 2014; 57: 8657
  • 8 Johnson CN, Adelinet C, Berdini V, Beke L, Bonnet P, Brehmer D, Calo F, Coyle JE, Day PJ, Frederickson M, Freyne EJ. E, Gilissen RA. H. J, Hamlett CC. F, Howard S, Meerpoel L, Mevellec L, McMenamin R, Pasquier E, Patel S, Rees DC, Linders JT. M. ACS Med. Chem. Lett. 2015; 6: 31
  • 9 Buckley DL, Raina K, Darricarrere N, Hines J, Gustafson JL, Smith IE, Miah AH, Harling JD, Crews CM. ACS Chem. Biol. 2015; 10: 1831
  • 10 For the characterization of the O-acyl side product occurring during the coupling of phenol 6d with Boc-Hyp-OH, see Supporting Information.
  • 11 Kaburagi Y, Kishi Y. Org. Lett. 2007; 9: 723
    • 12a Buckley DL, Van Molle I, Gareiss PC, Tae HS, Michel J, Noblin DJ, Jorgensen WL, Ciulli A, Crews CM. J. Am. Chem. Soc. 2012; 134: 4465
    • 12b Tovell H, Testa A, Maniaci C, Zhou H, Prescott AR, Macartney T, Ciulli A, Alessi DR. ACS Chem. Biol. 2019; 14: 882
  • 13 The X-ray crystallographic data collection for compounds 14 was performed on a Bruker X8-Kappa ApexII diffractometer at 100(2) K. The diffractometer was equipped with a low-temperature device (Kryoflex I, Bruker AXS) and used Mo-K α radiation (λ = 0.71073 Å). Intensities were measured by fine-slicing ϕ- and ω-scans and corrected for background, polarization, and Lorentz effects. Semiempirical absorption corrections were applied for all data sets by using Bruker’s SADABS program. The structures were solved by direct methods and refined anisotropically by the least-squares procedure implemented in the ShelX-2014/7 program system. Hydrogen atoms were included isotopically using the riding model on the bound carbon atoms. CCDC 1986177 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 14 For the feasible synthesis of aldehyde 4d from 3-bromophenol or 4-bromosalicylic acid, see Supporting Information.
    • 15a Raina K, Lu J, Qian Y, Altieri M, Gordon D, Rossi AM. K, Wang J, Chen X, Dong H, Siu K, Winkler JD, Crew AP, Crews CM, Coleman KG. Proc. Natl. Acad. Sci. U. S. A. 2016; 113: 7124
    • 15b Hu J, Hu B, Wang M, Xu F, Miao B, Yang C.-Y, Wang M, Liu Z, Hayes DF, Chinnaswamy K, Delproposto J, Stuckey J, Wang S. J. Med. Chem. 2019; 62: 1420
    • 15c Wei J, Hu J, Wang L, Xie L, Jin MS, Chen X, Liu J, Jin J. J. Med. Chem. 2019; 62: 10897
  • 16 Yamazaki Y, Kohno K, Yasui H, Kiso Y, Akamatsu M, Nicholson B, Deyanat-Yazdi G, Neuteboom S, Potts B, Lloyd GK, Hayashi Y. ChemBioChem 2008; 9: 3074