Synlett 2021; 32(03): 249-257
DOI: 10.1055/s-0040-1707221
account
© Georg Thieme Verlag Stuttgart · New York

Metal-Quinoid Carbene Chemistry: From Bonding to C–H Activation Catalysis

a   State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pofkulam Road, Hong Kong, P. R. of China
,
Kai Wu
a   State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pofkulam Road, Hong Kong, P. R. of China
,
Chi-Ming Che
a   State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pofkulam Road, Hong Kong, P. R. of China
b   HKU Shenzhen Institute of Research & Innovation, Shenzhen, 518053, P. R. of China   Email: cmche@hku.hk
› Author Affiliations
This work is supported by the Hong Kong Research Grants Council (HKU 17303815) and the Basic Research Program-Shenzhen Fund (JCYJ20170412140251576, JCYJ20170818141858021, and JCYJ20180508162429786).
Further Information

Publication History

Received: 15 June 2020

Accepted after revision: 04 July 2020

Publication Date:
07 August 2020 (online)


Abstract

This account summarizes our recent work on metal-quinoid carbene (QC) chemistry including (a) dirhodium-catalyzed QC C(sp2)–H insertion reactions enabled by a C-centered carbene-transfer reactivity, (b) the isolation, characterization, and dual reactivity of Ru(II) porphyrin QC complexes, and (c) iridium(III) porphyrin-catalyzed QC C(sp3)–H insertion reaction initiated by an O-centered hydrogen-atom transfer reactivity of metal–QC species.

1 Introduction

2 Catalytic Quinoid Carbene Insertions into C(sp2)–H Bonds Enabled by Carbene-Transfer Reactivity

3 Ruthenium(II) Porphyrin Quinoid Carbene Complexes and Dual Reactivity

4 Catalytic Quinoid Carbene Insertions into C(sp3)–H Bonds Enabled by Hydrogen-Atom-Transfer Reactivity

5 Perspective and Outlook

 
  • References


    • For reviews on catalytic carbene-transfer/insertion reactions, see:
    • 1a Doyle MP, McKervey MA, Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides. Wiley-Interscience; New York: 1998
    • 1b Davies HM. L, Beckwith RE. J. Chem. Rev. 2003; 103: 2861
    • 1c Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
    • 1d Caballero A, Díaz-Requejo MM, Fructos MR, Olmos A, Urbano J, Pérez PJ. Dalton Trans. 2015; 44: 20295
    • 1e Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
  • 2 For a review, see: Othman DI. A, Kitamura M. Heterocycles 2016; 92: 1761
    • 3a Sundberg RJ, Baxter EW, Pitts WJ, Ahmed-Schofield R, Nishiguchi T. J. Org. Chem. 1988; 53: 5097
    • 3b Boger DL, Jenkins TJ. J. Am. Chem. Soc. 1996; 118: 8860
    • 3c Dao HT, Baran PS. Angew. Chem. Int. Ed. 2014; 53: 14382
    • 3d Sundberg RJ, Pitts WJ. J. Org. Chem. 1991; 56: 3048
    • 4a Sawada T, Fuerst DE, Wood JL. Tetrahedron Lett. 2003; 44: 4919
    • 4b Baral ER, Lee YR, Kim SH. Adv. Synth. Catal. 2015; 357: 2883
    • 4c Kitamura M, Takahashi S, Okauchi T. J. Org. Chem. 2015; 80: 8406
    • 4d Zhang S.-S, Jiang C.-Y, Wu J.-Q, Liu X.-G, Li Q, Huang Z.-S, Li D, Wang H. Chem. Commun. 2015; 51: 10240
    • 4e Chen R, Cui S. Org. Lett. 2017; 19: 4002
    • 4f Das D, Poddar P, Maity S, Samanta R. J. Org. Chem. 2017; 82: 3612
    • 4g Liu Z, Wu J.-Q, Yang S.-D. Org. Lett. 2017; 19: 5434
    • 4h Magar KB. S, Edison TN. J. I, Lee YR. Eur. J. Org. Chem. 2017; 2017: 7046
    • 4i Ghosh B, Biswas A, Chakraborty S, Samanta R. Chem. Asian J. 2018; 13: 2388
    • 4j Jang Y.-S, Woźniak Ł, Pedroni J, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 12901
    • 4k Ghosh B, Samanta R. Chem. Commun. 2019; 55: 6886
    • 4l Li X, Wang J, Xie X, Dai W, Han X, Chen K, Liu H. Chem. Commun. 2020; 56: 3441
    • 5a Kitamura M, Otsuka K, Takahashi S, Okauchi T. Tetrahedron Lett. 2017; 58: 3508
    • 5b Othman DI. A, Otsuka K, Takahashi S, Selim KB, El-Sayed MA, Tantawy AS, Okauchi T, Kitamura M. Synlett 2018; 29: 457
  • 6 Kitamura M, Kisanuki M, Sakata R, Okauchi T. Chem. Lett. 2011; 40: 1129
    • 7a Kitamura M, Sakata R, Okauchi T. Tetrahedron Lett. 2011; 52: 1931
    • 7b Kitamura M, Kisanuki M, Okauchi T. Eur. J. Org. Chem. 2012; 2012: 905
    • 7c Kitamura M, Araki K, Matsuzaki H, Okauchi T. Eur. J. Org. Chem. 2013; 2013: 5045
    • 7d Kitamura M, Kisanuki M, Kanemura K, Okauchi T. Org. Lett. 2014; 16: 1554
    • 7e Baral ER, Lee YR, Kim SH, Wee Y.-J. Synthesis 2016; 48: 579
    • 8a Ashkenazi N, Vigalok A, Parthiban S, Ben-David Y, Shimon LJ. W, Martin JM. L, Milstein D. J. Am. Chem. Soc. 2000; 122: 8797
    • 8b Dauth A, Gellrich U, Diskin-Posner Y, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2017; 139: 2799
  • 9 Wu K, Cao B, Zhou C.-Y, Che C.-M. Chem. Eur. J. 2018; 24: 4815
  • 10 Wang H.-X, Wan Q, Wu K, Low K.-H, Yang C, Zhou C.-Y, Huang J.-S, Che C.-M. J. Am. Chem. Soc. 2019; 141: 9027
  • 11 Wang H.-X, Richard Y, Wan Q, Zhou C.-Y, Che C.-M. Angew. Chem. Int. Ed. 2020; 59: 1845
    • 12a Collman JP, Brothers PJ, McElwee-White L, Rose E, Wright LJ. J. Am. Chem. Soc. 1985; 107: 4570
    • 12b Collman JP, Rose E, Venburg GD. J. Chem. Soc., Chem. Commun. 1993; 934
    • 12c Galardon E, Le Maux P, Toupet L, Simonneaux G. Organometallics 1998; 17: 565
    • 12d Che C.-M, Huang J.-S, Lee F.-W, Li Y, Lai T.-S, Kwong H.-L, Teng P.-F, Lee W.-S, Lo W.-C, Peng S.-M, Zhou Z.-Y. J. Am. Chem. Soc. 2001; 123: 4119
    • 12e Che C.-M, Huang J.-S. Coord. Chem. Rev. 2002; 231: 151
    • 12f Li Y, Huang J.-S, Xu G.-B, Zhu N, Zhou Z.-Y, Che C.-M, Wong K.-Y. Chem. Eur. J. 2004; 10: 3486
    • 12g Che C.-M, Ho C.-M, Huang J.-S. Coord. Chem. Rev. 2007; 251: 2145
    • 12h Le Maux P, Roisnel T, Nicolas I, Simonneaux G. Organometallics 2008; 27: 3037
    • 12i Deng Q.-H, Chen J, Huang J.-S, Chui SS.-Y, Zhu N, Li G.-Y, Che C.-M. Chem. Eur. J. 2009; 15: 10707
    • 12j Wang H.-X, Wan Q, Low K.-H, Zhou C.-Y, Huang J.-S, Zhang J.-L, Che C.-M. Chem. Sci. 2020; 11: 2243
    • 13a Reddy AR, Guo Z, Siu F.-M, Lok C.-N, Liu F, Yeung K.-C, Zhou C.-Y, Che C.-M. Org. Biomol. Chem. 2012; 10: 9165
    • 13b Reddy AR, Zhou C.-Y, Che C.-M. Org. Lett. 2014; 16: 1048
    • 13c Wu K, Zhou C.-Y, Che C.-M. Org. Lett. 2018; 21: 85
    • 14a Li Y, Huang J.-S, Zhou Z.-Y, Che C.-M, You X.-Z. J. Am. Chem. Soc. 2002; 124: 13185
    • 14b Li Y, Huang J.-S, Zhou Z.-Y, Che C.-M. J. Am. Chem. Soc. 2001; 123: 4843
  • 15 Miller JS, Min KS. Angew. Chem. Int. Ed. 2009; 48: 262
    • 16a Kadish KM, Deng YJ, Yao C.-L, Anderson JE. Organometallics 1988; 7: 1979
    • 16b Palmer JH, Day MW, Wilson AD, Henling LM, Gross Z, Gray HB. J. Am. Chem. Soc. 2008; 130: 7786

      For reviews on metal-carbene radical reactivity, see:
    • 17a Dzik WI, Zhang XP, de Bruin B. Inorg. Chem. 2011; 50: 9896
    • 17b van Leest NP, Epping RF. J, van Vliet KM, Lankelma M, van den Heuvel EJ, Heijtbrink N, Broersen R, de Bruin B. Adv. Organomet. Chem. 2018; 70; 71
  • 18 Kornecki KP, Briones JF, Boyarskikh V, Fullilove F, Autschbach J, Schrote KE, Lancaster KM, Davies HM. L, Berry JF. Science 2013; 342: 351
  • 19 Wu K, Wu L.-L, Zhou C.-Y, Che C.-M. Angew, Chem. Int. Ed. 2020; in press, DOI: DOI 10.1002/anie.202006542.
  • 20 Öfele K, Tosh E, Taubmann C, Herrmann WA. Chem. Rev. 2009; 109: 3408