Synthesis 2020; 52(18): 2650-2661
DOI: 10.1055/s-0040-1707176
feature
© Georg Thieme Verlag Stuttgart · New York

Lewis Basic Amine Catalyzed Aza-Michael Reaction of Indole- and Pyrrole-3-carbaldehydes

Chang-Jiang Xu
a   Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China   Email: ycchen@scu.edu.cn
,
Wei Du
a   Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China   Email: ycchen@scu.edu.cn
,
Łukasz Albrecht
b   Institute of Organic Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
,
a   Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China   Email: ycchen@scu.edu.cn
› Author Affiliations
We are grateful for the financial support from the National Natural Science Foundation of China (NSFC; 21961132004), the Higher Education Discipline Innovation Project (111 project; B18035), and the National­ Science Center (UMO-2018/30/Q/ST5/00466, Sheng programme).
Further Information

Publication History

Received: 01 May 2020

Accepted after revision: 03 June 2020

Publication Date:
14 July 2020 (online)


Abstract

3-Formyl substituted indoles or pyrroles can form HOMO-raised dearomative aza-dienamine-type intermediates with secondary amines, which can undergo direct aza-Michael addition to β-trifluoromethyl enones to afford N-alkylated products efficiently, albeit with low to fair enantioselectivity. In addition, similar asymmetric aza-Michael additions of these heteroarenes and crotonaldehyde are realized under dual catalysis of chiral amines, and the adducts are obtained with moderate to good enantioselectivity.

Supporting Information

 
  • References

    • 1a O’Connor SE, Maresha JJ. Nat. Prod. Rep. 2006; 23: 532
    • 1b El-Sayed M, Verpoorte R. Phytochem. Rev. 2007; 6: 277
    • 1c Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
    • 1d Homer JA, Sperry J. J. Nat. Prod. 2017; 80: 2178
    • 1e Singh TP, Singh OM. Mini-Rev. Med. Chem. 2018; 18: 9
    • 1f Hamid HA, Ramli AN, Yusoff MM. Front. Pharmacol. 2017; 8: 96
    • 1g Guo Q, Yang HH, Liu X, Si XL, Liang H, Tu PF, Zhang QY. Fitoterapia 2018; 127: 47
    • 1h Lindel T. Alkaloids 2017; 77: 117
    • 1i Chen SD, Yong TQ, Xiao C, Su JY, Zhang YF, Jiao CW, Xie YZ. J. Funct. Foods 2018; 43: 196
    • 2a Song J, Chen DF, Gong LZ. Natl. Sci. Rev. 2017; 4: 381
    • 2b Liu X.-Y, Qin Y. Acc. Chem. Res. 2019; 52: 1877
    • 2c Robertson J, Stevens K. Nat. Prod. Rep. 2017; 34: 62
    • 2d Hu DX, Withall DM, Challis GL, Thomson RJ. Chem. Rev. 2016; 116: 7818
    • 2e Nagaraju K, Ma DW. Chem. Soc. Rev. 2018; 47: 8018
    • 2f Kumar K, Kumar V. RSC Adv. 2015; 5: 10899
    • 2g Kshirsagar UA. Org. Biomol. Chem. 2015; 13: 9336

      For selected reviews, see:
    • 3a Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
    • 3b Bartoli G, Bencivenni G, Dalpozzo R. Chem. Soc. Rev. 2010; 39: 4449
    • 3c Dalpozzo R. Chem. Soc. Rev. 2015; 44: 742

      For selected examples of metal-catalyzed NH-functionalizations, see:
    • 4a Trost BM, Krische MJ, Berl V, Grenzer EM. Org. Lett. 2002; 4: 2005
    • 4b Stanley LM, Hartwig JF. Angew. Chem. Int. Ed. 2009; 48: 7841
    • 4c Chen L.-Y, Yu X.-Y, Chen J.-R, Feng B, Zhang H, Qi Y.-H, Xiao W.-J. Org. Lett. 2015; 17: 1381
    • 4d Sevov CS, Zhou J, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 3200
    • 4e Trost BM, Osipov M, Dong G. J. Am. Chem. Soc. 2010; 132: 15800
    • 4f Cheng H.-G, Lu L.-Q, Wang T, Yang Q.-Q, Liu X.-P, Li Y, Deng Q.-H, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2013; 52: 3250

      For selected reviews of organocatalysis, see:
    • 5a Giacalone F, Gruttadauria M, Agrigentoa P, Noto R. Chem. Soc. Rev. 2012; 41: 2406
    • 5b Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
    • 5c Bertelsena S, Jørgensen KA. Chem. Soc. Rev. 2009; 38: 2178

      Selected examples of organocatalytic NH-functionalizations: For indoles, see:
    • 6a Bandini M, Eichholzer A, Tragni M, Umani-Ronchi A. Angew. Chem. Int. Ed. 2008; 47: 3238
    • 6b Cui H.-L, Feng X, Peng J, Lei J, Jiang K, Chen Y.-C. Angew. Chem. Int. Ed. 2009; 48: 5737
    • 6c Bandini M, Bottoni A, Eichholzer A, Miscione GP, Stenta M. Chem. Eur. J. 2010; 16: 12462
    • 6d Cai Q, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2010; 49: 8666
    • 6e Hong L, Sun WS, Liu CX, Wang L, Wang R. Chem. Eur. J. 2010; 16: 440
    • 6f Enders D, Greb A, Deckers K, Selig P, Merkens C. Chem. Eur. J. 2012; 18: 10226
    • 6g Enders D, Joie C, Deckers K. Chem. Eur. J. 2013; 19: 10818
    • 6h Zhao Q, Zhuo C.-X, You S.-L. RSC Adv. 2014; 4: 10875
    • 6i Dou X, Yao W, Jiang C, Lu Y. Chem. Commun. 2014; 50: 11354
    • 6j Xu K, Gilles T, Breit B. Nat. Commun. 2015; 6: 7616
    • 6k Giardinetti M, Moreau X, Coeffard V, Greck C. Adv. Synth. Catal. 2015; 357: 3501
    • 6l Chen M, Sun J. Angew. Chem. Int. Ed. 2017; 56: 4583
    • 6m Ma C, Zhang T, Zhou J.-Y, Mei G.-J, Shi F. Chem. Commun. 2017; 53: 12124
    • 6n Mukherjee S, Shee S, Poisson T, Besset T, Biju AT. Org. Lett. 2018; 20: 6998

    • For pyrroles, see:
    • 6o Bae J.-Y, Lee H.-J, Youn S.-H, Kwon S.-H, Cho C.-W. Org. Lett. 2010; 12: 4352
    • 6p Lee H.-J, Cho C.-W. J. Org. Chem. 2013; 78: 3306
    • 6q Lee H.-J, Cho C.-W. Eur. J. Org. Chem. 2014; 387

      For reviews, see:
    • 7a Xiao B.-X, Gao X.-Y, Du W, Chen Y.-C. Chem. Eur. J. 2019; 25: 1607
    • 7b Przydacz A, Skrzyńska A, Albrecht Ł. Angew. Chem. Int. Ed. 2019; 58: 63
    • 8a Liu YG, Luo GY, Yang X, Jiang SC, Xue W, Chi YR, Jin ZC. Angew. Chem. Int. Ed. 2020; 59: 442
    • 8b Balanna K, Madica K, Mukherjee S, Ghosh A, Poisson T, Besset T, Jindal G, Biju AT. Chem. Eur. J. 2019; 26: 818
    • 8c Yang X, Luo GY, Zhou LJ, Liu B, Zhang XL, Gao H, Jin ZC, Chi YR. ACS Catal. 2019; 9: 10971
  • 9 Bertuzzi G, Thøgersen MK, Giardinetti M, Vidal-Albalat A, Simon A, Houk KN, Jørgensen KA. J. Am. Chem. Soc. 2019; 141: 3288
  • 10 The previously formed 3-(aminomethylene)-3H-indoles could react with alkyl and acyl halides to give N-substituted products, see: Morya T, Hagio K, Yoneda N. Chem. Pharm. Bull. 1980; 28: 1711

    • For selected examples, see:
    • 11a Yang Y, Jiang Y, Du W, Chen Y.-C. Chem. Eur. J. 2020; 26: 1754
    • 11b You Y, Lu W.-Y, Wang Z.-H, Chen Y.-Z, Xu X.-Y, Zhang X.-M, Yuan W.-C. Org. Lett. 2018; 20: 4453
    • 11c Yang Q.-Q, Xiao W, Du W, Ouyang Q, Chen Y.-C. Chem. Commun. 2018; 54: 1129
    • 11d Yuan X, Zhang S.-J, Du W, Chen Y.-C. Chem. Eur. J. 2016; 22: 11048
    • 12a Hayashi Y, Gotoh H, Hayashi T, Shoji M. Angew. Chem. Int. Ed. 2005; 44: 4212
    • 12b Donslund BS, Johansen TK, Poulsen PH, Halskov KS, Jørgensen KA. Angew. Chem. Int. Ed. 2015; 54: 13860
    • 12c Gao X.-Y, Yan R.-J, Xiao B.-X, Du W, Albrecht Ł, Chen Y.-C. Org. Lett. 2019; 21: 9628
    • 12d He X.-L, Zhao H.-R, Duan C.-Q, Han X, Du W, Chen Y.-C. Chem. Eur. J. 2018; 24: 6277
    • 12e Duan C.-Q, He X.-L, Du W, Chen Y.-C. Org. Chem. Front. 2018; 5: 2057
  • 13 For more details, see the Supporting Information.
  • 14 Outlaw VK, Townsend CA. Org. Lett. 2014; 16: 6334

    • For reviews of dual catalysis, see:
    • 15a Allen AE, MacMillan DW. C. Chem. Sci. 2012; 3: 633
    • 15b Zou YQ, Hörmann FM, Bach T. Chem. Soc. Rev. 2018; 47: 278
    • 15c Inamdar SM, Shinde VS, Patil NT. Org. Biomol. Chem. 2015; 13: 8116

    • For limited examples of dual aminocatalysis, see:
    • 15d Xia A.-B, Xu D.-Q, Luo S.-P, Jiang J.-R, Tang J, Wang Y.-F, Xu Z.-Y. Chem. Eur. J. 2010; 16: 801
    • 15e Hayashi Y, Umekubo N, Bella M. Angew. Chem. Int. Ed. 2018; 57: 1958
    • 16a Erkkilä A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416
    • 16b Zou YQ, Hörmann FM, Bach T. Chem. Soc. Rev. 2018; 47: 278
  • 17 The Michael adduct was not stable, thus the aliphatic aldehyde was reduced with NaBH4 at 0 °C to afford 7a chemoselectively. Notably, the aromatic aldehyde moiety was untouched under these reduction conditions, and higher temperature (room temperature) and longer reaction time (ca. 2 h) were required for the complete reduction of both formyl groups, giving the diol in 68% yield.
  • 18 The absolute configuration of the chiral product 7a was assigned by electronic circular dichroism (ECD) analysis after derivation (see the Supporting Information). The other products 7 and 8 were assigned by analogy.
  • 19 Wei Y, Liu ZW, Wu XX, Fei J, Gu XD, Yuan XQ, Ye J. Chem. Eur. J. 2015; 21: 18921