Synlett 2020; 31(14): 1349-1360
DOI: 10.1055/s-0040-1707106
account
© Georg Thieme Verlag Stuttgart · New York

Activation of C–F, Si–F, and S–F Bonds by N-Heterocyclic Carbenes and Their Isoelectronic Analogues

Ewa Pietrasiak
a   Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea
,
Eunsung Lee
a   Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea
b   Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 37673, South Korea   Email: eslee@postech.ac.kr
› Author Affiliations
This work was supported by Korea Research Fellowship Program through the National Research Foundation of Korea (NRF, Grant No. NRF-2018R1A4A1024713) funded by the Ministry of Science and ICT (Grant No. 2019H1D3A1A01102719).
Further Information

Publication History

Received: 31 March 2020

Accepted after revision: 14 April 2020

Publication Date:
07 May 2020 (online)


Abstract

Reactions involving C–F, Si–F, and S–F bond cleavage with N-heterocyclic carbenes and isoelectronic species are reviewed. Most examples involve activation of aromatic C–F bond via an SNAr pathway and nucleophilic substitution of fluorine in electron-deficient olefins. The mechanism of the C–F bond activation depends on the reaction partners and the reaction can proceed via addition–elimination, oxidative addition (concerted or stepwise) or metathesis. The adducts formed upon substitution find applications in organic synthesis, as ligands and as stable radical precursors, but in most cases, their full potential remains unexplored.

1 Introduction

1.1 The C–F Bond

1.2 C–F Bond Activation: A Short Summary

1.3 C–F Bond Activation: A Special Case of SNAr

1.4 N-Heterocyclic Carbenes (NHCs)

1.5 The Purpose of this Article

2 C–F bond Activation in Acyl Fluorides

3 Activation of Vinylic C–F Bonds

4 Activation of Aromatic C–F Bonds

5 X–F Bond Activation (X = S or Si)

6 C–F Bond Activation by Main Group Compounds Isoelectronic with NHCs

7 Conclusions and Outlook

 
  • References

  • 1 O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
  • 2 Amii H, Uneyama K. Chem. Rev. 2009; 109: 2119
  • 3 Fowler R, Buford WIII, Hamilton JJ, Sweet R, Weber C, Kasper J, Litant I. Ind. Eng. Chem. 1947; 39: 292
  • 4 Ahrens T, Kohlmann J, Ahrens M, Braun T. Chem. Rev. 2015; 115: 931
  • 5 Fujita T, Fuchibe K, Ichikawa J. Angew. Chem. Int. Ed. 2019; 58: 390
  • 6 Lim S, Song D, Jeon S, Kim Y, Kim H, Lee S, Cho H, Lee BC, Kim SE, Kim K, Lee E. Org. Lett. 2018; 20: 7249
  • 7 Chen W, Bakewell C, Crimmin M. Synthesis 2016; 49: 810
  • 8 Bayne JM, Stephan DW. Chem. Eur. J. 2019; 25: 9350
  • 9 Lennox AJ. J. Angew. Chem. Int. Ed. 2018; 57: 14686
  • 10 Kwan EE, Zeng Y, Besser HA, Jacobsen EN. Nat. Chem. 2018; 10: 917
  • 11 Rohrbach S, Smith AJ, Pang JH, Poole DL, Tuttle T, Chiba S, Murphy JA. Angew. Chem. Int. Ed. 2019; 58: 16368
  • 12 Bourissou D, Guerret O, Gabbaï FP, Bertrand G. Chem. Rev. 2000; 100: 39
  • 13 Breslow R. J. Am. Chem. Soc. 1958; 80: 3719
  • 14 Wanzlick H.-W, Schönherr H.-J. Angew. Chem., Int. Ed. Engl. 1968; 7: 141
  • 15 Oefele K. J. Organomet. Chem. 1968; 12: 42
  • 16 Arduengo AJ, Harlow RL, Kline M. J. Am. Chem. Soc. 1991; 113: 361
  • 17 Munz D. Organometallics 2018; 37: 275
  • 18 Dröge T, Glorius F. Angew. Chem. Int. Ed. 2010; 49: 6940
  • 19 Nelson DJ, Nolan SP. Chem. Soc. Rev. 2013; 42: 6723
  • 20 Moss RA, Fedorynski M, Shieh W.-C. J. Am. Chem. Soc. 1979; 101: 4736
  • 21 Lavallo V, Canac Y, Präsang C, Donnadieu B, Bertrand G. Angew. Chem. Int. Ed. 2005; 44: 5705
  • 22 Lavallo V, Canac Y, Donnadieu B, Schoeller WW, Bertrand G. Angew. Chem. Int. Ed. 2006; 45: 3488
  • 23 Rao B, Tang H, Zeng X, Liu L, Melaimi M, Bertrand G. Angew. Chem. Int. Ed. 2015; 54: 14915
  • 24 Gildner MB, Hudnall TW. Chem. Commun. 2019; 55: 12300
  • 25 Sultane PR, Ahumada G, Janssen-Müller D, Bielawski CW. Angew. Chem. Int. Ed. 2019; 58: 16320
  • 26 Hudnall TW, Bielawski CW. J. Am. Chem. Soc. 2009; 131: 16039
  • 27 Hudnall TW, Moorhead EJ, Gusev DG, Bielawski CW. J. Org. Chem. 2010; 75: 2763
  • 28 Hudnall TW, Moerdyk JP, Bielawski CW. Chem. Commun. 2010; 46: 4288
  • 29 Song H, Kim H, Lee E. Angew. Chem. Int. Ed. 2018; 57: 8603
  • 30 Guisado-Barrios G, Bouffard J, Donnadieu B, Bertrand G. Angew. Chem. Int. Ed. 2010; 49: 4759
  • 31 Sau SC, Hota PK, Mandal SK, Soleilhavoup M, Bertrand G. Chem. Soc. Rev. 2020; 49: 1233
  • 32 Díez-González S, Marion N, Nolan SP. Chem. Rev. 2009; 109: 3612
  • 33 Jazzar R, Soleilhavoup M, Bertrand G. Chem. Rev. 2020; DOI: in press; DOI:10.1021/acs.chemrev.0c00043.
  • 34 Danopoulos AA, Simler T, Braunstein P. Chem. Rev. 2019; 119: 3730
  • 35 Nolan SP. N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis. Wiley-VCH; Weinheim: 2014
  • 36 Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
  • 37 Chu T, Nikonov GI. Chem. Rev. 2018; 118: 3608
  • 38 Song H, Kim Y, Park J, Kim K, Lee E. Synlett 2015; 27: 477
  • 39 Kim Y, Lee E. Chem. Eur. J. 2018; 24: 19110
  • 40 Kuhn N, Fahl J, Boese R, Henkel G. Z. Naturforsch., B, Anorg. Chem., Org. Chem., Biochem., Biophys., Biol. 1998; 53: 881
  • 41 Brooke GM. J. Fluorine Chem. 1997; 86: 1
  • 42 Ryan SJ, Candish L, Lupton DW. J. Am. Chem. Soc. 2009; 131: 14176
  • 43 Ryan SJ, Candish L, Lupton DW. J. Am. Chem. Soc. 2011; 133: 4694
  • 44 Ryan SJ, Stasch A, Paddon-Row MN, Lupton DW. J. Org. Chem. 2012; 77: 1113
  • 45 Candish L, Lupton DW. J. Am. Chem. Soc. 2013; 135: 58
  • 46 Candish L, Forsyth CM, Lupton DW. Angew. Chem. Int. Ed. 2013; 52: 9149
  • 47 Ryan SJ, Schimler SD, Bland DC, Sanford MS. Org. Lett. 2015; 17: 1866
  • 48 Arduengo AJ, Calabrese JC, Rasika Dias HV, Davidson F, Goerlich JR, Jockisch A, Kline M, Marshall WJ, Runyon JW. Phosphorus, Sulfur Silicon Relat. Elem. 2016; 191: 527
  • 49 Leclerc MC, Gabidullin BM, Da Gama JG, Daifuku SL, Iannuzzi TE, Neidig ML, Baker RT. Organometallics 2017; 36: 849
  • 50 Leclerc MC, Gorelsky SI. B, Gabidullin M, Korobkov I, Baker RT. Chem. Eur. J. 2016; 22: 8063
  • 51 Leclerc MC, Da Gama JG, Gabidullin BM, Baker RT. J. Fluorine Chem. 2017; 203: 81
  • 52 Ung G, Bertrand G. Chem. Eur. J. 2011; 17: 8269
  • 53 Mallah E, Kuhn N, Maichle-Mößmer C, Steimann M, Ströbele M, Zeller K.-P. Z. Naturforsch., B: Anorg. Chem., Org. Chem., Biochem., Biophys., Biol. 2009; 64: 1176
  • 54 Kronig S, Theuergarten E, Holschumacher D, Bannenberg T, Daniliuc CG, Jones PG, Tamm M. Inorg. Chem. 2011; 50: 7344
  • 55 Andrews R, Stephan DW. Chem. Eur. J. 2020; DOI: in press; 10.1002/chem.202001191.
  • 56 Kuhn N, Weyers G, Bläser D, Boese R. Z. Naturforsch., B: Anorg. Chem., Org. Chem., Biochem., Biophys., Biol. 2001; 56: 1235
  • 57 Emerson-King J, Hauser SA, Chaplin AB. Org. Biomol. Chem. 2017; 15: 787
  • 58 Pait M, Kundu G, Tothadi S, Karak S, Jain S, Vanka K, Sen SS. Angew. Chem. Int. Ed. 2019; 131: 2830
  • 59 Kundu G, De S, Tothadi S, Das A, Koley D, Sen SS. Chem. Eur. J. 2019; 25: 16533
  • 60 Kim Y, Lee E. Chem. Commun. 2016; 52: 10922
  • 61 Styra S, Melaimi M, Moore CE, Rheingold AL, Augenstein T, Breher F, Bertrand G. Chem. Eur. J. 2015; 21: 8441
  • 62 Turner ZR. Chem. Eur. J. 2016; 22: 11461
  • 63 Paul US. D, Radius U. Chem. Eur. J. 2017; 23: 3993
  • 64 Huber SM, Heinemann FW, Audebert P, Weiss R. Chem. Eur. J. 2011; 17: 13078
  • 65 Tretyakov EV, Fedyushin PA, Panteleeva EV, Stass DV, Bagryanskaya IY, Beregovaya IV, Bogomyakov AS. J. Org. Chem. 2017; 82: 4179
  • 66 César V, Labat S, Miqueu K, Sotiropoulos J.-M, Brousses R, Lugan N, Lavigne G. Chem. Eur. J. 2013; 19: 17113
  • 67 Suzuki Y, Toyota T, Imada F, Sato M, Miyashita A. Chem. Commun. 2003; 3: 1314
  • 68 Ibrahim Al-Rafia SM, Malcolm AC, Liew SK, Ferguson MJ, McDonald R, Rivard E. Chem. Commun. 2011; 47: 6987
  • 69 Mandal D, Chandra S, Neuman NI, Mahata A, Sarkar A, Kundu A, Anga S, Rawat H, Schulzke C, Mote KR, Sarkar B, Chandrasekhar V, Jana A. Chem. Eur. J. 2020; DOI: in press; 10.1002/chem.202000276.
  • 70 Darwent B. deB. National Standard Reference Data Series 1970
  • 71 Kuhn N, Bohnen H, Fahl J, Bläser D, Boese R. Chem. Ber. 1996; 129: 1579
  • 72 Tomar P, Braun T, Kemnitz E. Chem. Commun. 2018; 54: 9753
  • 73 Sladojevich F, Arlow SI, Tang P, Ritter T. J. Am. Chem. Soc. 2013; 135: 2470
  • 74 Tang P, Wang W, Ritter T. J. Am. Chem. Soc. 2011; 133: 11482
  • 75 Sinhababu S, Kundu S, Paesch AN, Herbst-Irmer R, Stalke D, Fernández I, Frenking G, Stückl AC, Schwederski B, Kaim W, Roesky HW. Chem. Eur. J. 2018; 24: 1264
  • 76 Junold K, Nutz M, Baus JA, Burschka C, Fonseca Guerra C, Bickelhaupt FM, Tacke R. Chem. Eur. J. 2014; 20: 9319
  • 77 Jana A, Samuel PP, Tavcar G, Roesky HW, Schulzke C. J. Am. Chem. Soc. 2010; 132: 10164
  • 78 Azhakar R, Roesky HW, Wolf H, Stalke D. Chem. Commun. 2013; 49: 1841
  • 79 Swamy VS. V. S. N, Parvin N, Vipin Raj K, Vanka K, Sen SS. Chem. Commun. 2017; 53: 9850
  • 80 Samuel PP, Singh AP, Sarish SP, Matussek J, Objartel I, Roesky HW, Stalke D. Inorg. Chem. 2013; 52: 1544
  • 81 Jana A, Roesky HW, Schulzke C, Samuel PP. Organometallics 2010; 29: 4837
  • 82 Jana A, Sarish SP, Roesky HW, Leusser D, Objartel I, Stalke D. Chem. Commun. 2011; 47: 5434
  • 83 Mondal T, De S, Koley D. Inorg. Chem. 2017; 56: 10633
  • 84 Crimmin MR, Butler MJ, White AJ. P. Chem. Commun. 2015; 51: 15994
  • 85 Chu T, Boyko Y, Korobkov I, Nikonov GI. Organometallics 2015; 34: 5363
  • 86 Pitsch CE, Wang X. Chem. Commun. 2017; 53: 8196
  • 87 Bakewell C, White AJ. P, Crimmin MR. Angew. Chem. Int. Ed. 2018; 57: 6638