Synthesis 2021; 53(09): 1531-1555
DOI: 10.1055/s-0040-1706713
review

Recent Advancements in Pyrrole Synthesis

Satish Chandra Philkhana
,
Fatimat O. Badmus
,
Isaac C. Dos Reis
,
Rendy Kartika
Generous financial supports from the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM127649 and Louisiana State University are gratefully acknowledged. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


Abstract

This review article features selected examples on the synthesis of functionalized pyrroles that were reported between 2014 and 2019. Pyrrole is an important nitrogen-containing aromatic heterocycle that can be found in numerous compounds of biological and material significance. Given its vast importance, pyrrole continues to be an attractive target for the development of new synthetic reactions. The contents of this article are organized by the starting materials, which can be broadly classified into four different types: substrates bearing π-systems, substrates bearing carbonyl and other polar groups, and substrates bearing heterocyclic motifs. Brief discussions on plausible reaction­ mechanisms for most transformations are also presented.

1 Introduction

2 From π-Systems

2.1 Alkenes

2.2 1,6-Dienes

2.3 Allenes

2.4 Alkynes

2.5 Propargylic Groups

2.6 Homopropargylic Amines

3 From Carbonyl Compounds

3.1 Aldehydes

3.2 Ketones

3.3 Cyanides and Isocyanides

3.4 Formamides

3.5 β-Enamines

3.6 Dicarbonyl Compounds

4 From Polar Compounds

4.1 Aminols

4.2 Diols

4.3 Organonitro Compounds

5 From Heterocycles

5.1 Münchnones

5.2 Isoxazoles

5.3 Carbohydrates

5.4 trans-4-Hydroxy-l-prolines

5.5 Pyrrolines

6 Summary



Publication History

Received: 25 November 2020

Accepted after revision: 08 January 2021

Article published online:
17 March 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Khajuria R, Dhamb S, Kapoor KK. RSC Adv. 2016; 6: 37039
  • 2 Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P. RSC Adv. 2015; 5: 15233
  • 3 Sobenina LN, Vasil’tsov AM, Petrova OV, Petrushenko KB, Ushakov IA, Clavier G, Meallet-Renault R, Mikhaleva AI, Trofimov BA. Org. Lett. 2011; 13: 2524
  • 4 Gimenez IF, Alves OL. J. Braz. Chem. Soc. 1999; 10: 167
  • 5 Nizurski-Mann RE, Cava MP. Heterocycles 1992; 34: 2003
  • 6 D’Silva C, Walker DA. J. Org. Chem. 1998; 63: 6715
  • 7 Runge FF. Ann. Phys. 1834; 107: 65
  • 8 Knorr L. Ber. Dtsch. Chem. Ges. 1884; 17: 2863
  • 9 Hantzsch A. Ber. Dtsch. Chem. Ges. 1890; 23: 1474
  • 10 Paal C. Ber. Dtsch. Chem. Ges. 1884; 17: 2756
  • 11 Arshadi S, Vessally E, Edjlali L, Ghorbani-Kalhor E, Hosseinzadeh-Khanmiri R. RSC Adv. 2017; 7: 13198
  • 12 Azad I, Hassan F, Ahmad N, Khan AR, Nasibullah M, Saquib M, Al-Sehemi AG. Orient. J. Chem. 2018; 34: 1670
  • 13 Belikov MY, Ershov OV. Chem. Heterocycl. Compd. 2016; 52: 279
  • 14 Chelucci G. Coord. Chem. Rev. 2017; 331: 37
  • 15 Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2014; 43: 4633
  • 16 Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
  • 17 Keiko NA, Vchislo NV. Chem. Heterocycl. Compd. 2017; 53: 498
  • 18 Leonardi M, Estevez V, Villacampa M, Menendez JC. Synthesis 2019; 51: 816
  • 19 Mosaad SM, Samar SF. Mini-Rev. Org. Chem. 2014; 11: 477
  • 20 Sharma A, Piplani P. J. Heterocycl. Chem. 2017; 54: 27
  • 21 Shrinivas DJ, Uttam AM, Venkatrao HK, Tejraj MA. Curr. Org. Chem. 2013; 17: 2279
  • 22 Tzankova D, Vladimirova S, Peikova L, Georgieva M. J. Chem. Technol. Metall. 2018; 53: 451
  • 23 Wood JM, Furkert DP, Brimble MA. Nat. Prod. Rep. 2019; 36: 289
  • 24 Yurovskaya MA, Alekseyev RS. Chem. Heterocycl. Compd. 2014; 49: 1400
  • 25 Ram RN, Sadanandan S, Kumar Gupta D. Adv. Synth. Catal. 2019; 361: 5661
  • 26 Aquino ED, Leonel G, Gariboti VC, Frizzo CP, Martins MA. P, Bonacorso HG, Zanatta N. J. Org. Chem. 2015; 80: 12453
  • 27 Zhang L, Zhang X, Lu Z, Zhang D, Xu X. Tetrahedron 2016; 72: 7926
  • 28 Borra S, Chandrasekhar D, Newar UD, Maurya RA. J. Org. Chem. 2019; 84: 1042
  • 29 Zhang X, Teo JW, Ma D.-L, Leung C.-H, Chan PW. H. Tetrahedron Lett. 2014; 55: 6703
  • 30 Grychowska K, Kubica B, Drop M, Colacino E, Bantreil X, Pawlowski M, Martinez J, Subra G, Zajdel P, Lamaty F. Tetrahedron 2016; 72: 7462
  • 31 Chen W, Zhang Y.-L, Li H.-J, Nan X, Liu Y, Wu Y.-C. Synthesis 2019; 51: 3651
  • 32 Perrulli FR, Favi G, De Crescentini L, Attanasi OA, Santeusanio S, Mantellini F. Eur. J. Org. Chem. 2015; 7154
  • 33 Wang Y, Jiang C.-M, Li H.-L, He F.-S, Luo X, Deng W.-P. J. Org. Chem. 2016; 81: 8653
  • 34 Cardoso AL, Henriques MS. C, Paixao JA, Pinho e Melo TM. V. D. J. Org. Chem. 2016; 81: 9028
  • 35 Ni C, Wang ML, Tong X. Org. Lett. 2016; 18: 2240
  • 36 Mariappan A, Rajaguru K, Muthusubramanian S, Bhuvanesh N. Synth. Commun. 2016; 46: 805
  • 37 Kuruba BK, Vasanthkumar S, Emmanuvel L. Tetrahedron 2017; 73: 3093
  • 38 Liu Y, Yi X, Luo X, Xi C. J. Org. Chem. 2017; 82: 11391
  • 39 George J, Kim HY, Oh K. Adv. Synth. Catal. 2016; 358: 3714
  • 40 Chen D, Shan Y, Li J, You J, Sun X, Qiu G. Org. Lett. 2019; 21: 4044
  • 41 Pasko CM, Dissanayake AA, Billow BS, Odom AL. Tetrahedron 2016; 72: 1168
  • 42 Wu F, Chen L, Wang Y, Zhu S. Org. Chem. Front. 2019; 6: 480
  • 43 Li X, Chen M, Xie X, Sun N, Li S, Liu Y. Org. Lett. 2015; 17: 2984
  • 44 Zhang S, Ma Y, Lan J, Song F, You J. Org. Biomol. Chem. 2015; 13: 5867
  • 45 Zhang X, Xu X, Chen G, Yi W. Org. Lett. 2016; 18: 4864
  • 46 Pan D, Wei Y, Shi M. Org. Lett. 2016; 18: 3930
  • 47 Schitter T, Stammwitz S, Jones PG, Werz DB. Org. Lett. 2019; 21: 9415
  • 48 Liu J, Zhang X, Peng H, Jiang H, Yin B. Adv. Synth. Catal. 2015; 357: 727
  • 49 Wan S.-H, Liu S.-T. Tetrahedron 2019; 75: 1166
  • 50 Li T, Yan H, Li X, Wang C, Wan B. J. Org. Chem. 2016; 81: 12031
  • 51 Urbanaitė A, Čikotienė I. Eur. J. Org. Chem. 2016; 5294
  • 52 Raju AR, Reddy RV, Rao VM, Naresh VV, Rao AV. Tetrahedron Lett. 2016; 57: 2838
  • 53 Liu J.-Q, Chen X.-Y, Shatskiy A, Kärkäs MD, Wang X.-S. J. Org. Chem. 2019; 84: 8998
  • 54 Tarasova OA, Nedolya NA, Albanov AI, Trofimov BA. Synthesis 2019; 51: 3697
  • 55 Sakai N, Hori H, Ogiwara Y. Eur. J. Org. Chem. 2015; 1905
  • 56 Qiu G, Wang Q, Zhu J. Org. Lett. 2017; 19: 270
  • 57 Nandi GC, Soumini K. J. Org. Chem. 2016; 81: 11909
  • 58 Yuan B, Jiang Y, Qi Z, Guan X, Wang T, Yan R. Adv. Synth. Catal. 2019; 361: 5112
  • 59 Wang C, Huang K, Wang J, Wang H, Liu L, Chang W, Li J. Adv. Synth. Catal. 2015; 357: 2795
  • 60 Gao Y, Hu C, Wan J.-P, Wen C. Tetrahedron Lett. 2016; 57: 4854
  • 61 Huang W, Chen S, Chen Z, Yue M, Li M, Gu Y. J. Org. Chem. 2019; 84: 5655
  • 62 Liu Y, Parodi A, Battaglioli S, Monari M, Protti S, Bandini M. Org. Lett. 2019; 21: 7782
  • 63 Xu H, Wang F.-J, Xin M, Zhang Z. Eur. J. Org. Chem. 2016; 925
  • 64 Trofimov BA, Mikhaleva AI, Ivanov AV, Shcherbakova VS, Ushakov IA. Tetrahedron 2015; 71: 124
  • 65 Khlebnikov AF, Tomashenko OA, Funt LD, Novikov MS. Org. Biomol. Chem. 2014; 12: 6598
  • 66 Galenko AV, Khlebnikov AF, Novikov MS, Avdontceva MS. Tetrahedron 2015; 71: 1940
  • 67 Chen X, Yuan JC, Zhou M. Synth. Commun. 2019; 49: 32
  • 68 Farahi M, Davoodi M, Tahmasebi M. Tetrahedron Lett. 2016; 57: 1582
  • 69 Egorov M, Delpech B, Aubert G, Cresteil T, Garcia-Alvarez MC, Collin P, Marazano C. Org. Biomol. Chem. 2014; 12: 1518
  • 70 Wu X, Li K, Wang S, Liu C, Lei A. Org. Lett. 2016; 18: 56
  • 71 Malone JA, Toussel CE, Fronczek FR, Kartika R. Org. Lett. 2019; 21: 3610
  • 72 Lei T, Liu W.-Q, Li J, Huang M.-Y, Yang B, Meng Q.-Y, Chen B, Tung C.-H, Wu L.-Z. Org. Lett. 2016; 18: 2479
  • 73 Lin Z.-q, Li C.-d, Zhou Z.-c, Xue S, Gao J.-r, Ye Q, Li Y.-j. Synlett 2019; 30: 1442
  • 74 Kucukdisli M, Ferenc D, Heinz M, Wiebe C, Opatz T. Beilstein J. Org. Chem. 2014; 10: 466
  • 75 Reekie TA, Donckele EJ, Manenti G, Püntener S, Trapp N, Diederich F. Org. Lett. 2016; 18: 2252
  • 76 Rao HS. P, Desai A. Synlett 2015; 26: 1059
  • 77 Peng J, Gao Y, Zhu C, Liu B, Gao Y, Hu M, Wu W, Jiang H. J. Org. Chem. 2017; 82: 3581
  • 78 Rahmani F, Darehkordi A. Synlett 2017; 28: 1224
  • 79 Fang G, Liu J, Fu J, Liu Q, Bi X. Org. Lett. 2017; 19: 1346
  • 80 Mou X.-Q, Xu Z.-L, Xu L, Wang S.-H, Zhang B.-H, Zhang D, Wang J, Liu W.-T, Bao W. Org. Lett. 2016; 18: 4032
  • 81 Gao P, Wang J, Bai Z.-J, Shen L, Yan Y.-Y, Yang D.-S, Fan M.-J, Guan Z.-H. Org. Lett. 2016; 18: 6074
  • 82 San Jang S, Chang JY, Kang GY, Youn SW. Asian J. Org. Chem. 2019; 8: 1668
  • 83 Bodunov VA, Galenko EE, Sakharov PA, Novikov MS, Khlebnikov AF. J. Org. Chem. 2019; 84: 10388
  • 84 Bonacorso HG, Libero FM, Dal Forno GM, Pittaluga EP, Back DF, Horner M, Martins MA. P, Zanatta N. Tetrahedron Lett. 2016; 57: 4568
  • 85 Kan W, Jing T, Zhang X.-h, Zheng Y.-i, Chen L, Zhao B. Heterocycles 2015; 91: 2367
  • 86 Leng J, Xu H, Meng J, Luo X, Deng W.-P. Tetrahedron 2019; 75: 130709
  • 87 Estevez V, Sridharan V, Sabate S, Villacampa M, Menendez JC. Asian J. Org. Chem. 2016; 5: 652
  • 88 Leonardi M, Esteeez V, Villacampa M, Menendez JC. Adv. Synth. Catal. 2019; 361: 2054
  • 89 Bai X, Wang L, Zhang Z, Zhang K, Bu Z, Wu Y, Zhang W, Wang Q. Adv. Synth. Catal. 2019; 361: 4893
  • 90 Kim C.-E, Park S, Eom D, Seo B, Lee PH. Org. Lett. 2014; 16: 1900
  • 91 Feng J, Wang Y, Li Q, Jiang R, Tang Y. Tetrahedron Lett. 2014; 55: 6455
  • 92 Ran R.-Q, He J, Xiu S.-D, Wang K.-B, Li C.-Y. Org. Lett. 2014; 16: 3704
  • 93 Rajasekar S, Anbarasan P. J. Org. Chem. 2014; 79: 8428
  • 94 Chechina NV, Kolos NN, Omelchenko IV. Chem. Heterocycl. Compd. 2019; 55: 1190
  • 95 Kolos NN, Chechina NV. Chem. Heterocycl. Compd. 2019; 55: 1278
  • 96 Kolos NN, Zubar VV, Omelchenko IV, Musatov VI. Chem. Heterocycl. Compd. 2016; 52: 237
  • 97 Chen Z, Chen H, Yang X, Chang XQ. Synlett 2017; 28: 1463
  • 98 Li K, Chen L, Fan Y.-X, Wei Y, Yan S.-J. J. Org. Chem. 2019; 84: 11971
  • 99 Chen X.-B, Wang X.-Y, Zhu D.-D, Yan S.-J, Lin J. Tetrahedron 2014; 70: 1047
  • 100 Chen X.-B, Yan S.-J, Su A, Liu W, Lin J. Tetrahedron 2015; 71: 4745
  • 101 Hu L, Wang K.-M, Zhao M, Lin X.-R, Zhu H.-Y, Yan S.-J, Lin J. Tetrahedron 2014; 70: 4478
  • 102 Chang X, Yang X, Chen Z, Zhong W. Synlett 2019; 30: 1431
  • 103 Sha Q, Arman H, Doyle MP. Org. Lett. 2015; 17: 3876
  • 104 Cheng W, Tang Y, Xu Z.-F, Li C.-Y. Org. Lett. 2016; 18: 6168
  • 105 Mehrabi H, Anary-Abbasinejad M, Mirhashemi F. Tetrahedron Lett. 2014; 55: 4310
  • 106 Hu LF, Luo J, Lu D, Tang Q. Tetrahedron Lett. 2018; 59: 1698
  • 107 Zhang Y, Weng G, Chen J, Ma D, Zhang X. Main Group Met. Chem. 2014; 37: 131
  • 108 Akelis L, Rousseau J, Juskenas R, Dodonova J, Rousseau C, Menuel S, Prevost D, Tumkevičius S, Monflier E, Hapiot F. Eur. J. Org. Chem. 2016; 31
  • 109 Bhandari N, Gaonkar SL. Chem. Heterocycl. Compd. 2015; 51: 320
  • 110 Akbaşlar D, Demirkol O, Giray S. Synth. Commun. 2014; 44: 1323
  • 111 Rajeshkumar V, Neelamegam C, Anandan S. Synthesis 2019; 51: 4023
  • 112 Zvarych VI, Stasevych MV, Lunin VV, Vovk MV, Novikov VP. Chem. Heterocycl. Compd. 2016; 52: 421
  • 113 Wani RR, Chaudhari HK, Takale BS. J. Heterocycl. Chem. 2019; 56: 1337
  • 114 Liu C, Zhou L, Huang W, Wang M, Gu Y. Adv. Synth. Catal. 2016; 358: 900
  • 115 Midya SP, Landge VG, Sahoo MK, Rana J, Balaraman E. Chem. Commun. 2018; 54: 90
  • 116 Siddiki S, Touchy AS, Chaudhari C, Kon K, Toyao T, Shimizu K.-i. Org. Chem. Front. 2016; 3: 846
  • 117 Singh K, Kabadwal LM, Bera S, Alanthadka A, Banerjee D. J. Org. Chem. 2018; 83: 15406
  • 118 Chen J, Chang D, Xiao F, Deng G.-J. J. Org. Chem. 2019; 84: 568
  • 119 Pachechne LA, Pereira VF, Martins GM, Martendal E, Xavier FR, Mendes SR. Tetrahedron Lett. 2019; 60: 151043
  • 120 Murthi PR. K, Rambabu D, Rao MV. B, Pal M. Tetrahedron Lett. 2014; 55: 507
  • 121 Atar AB, Han E, Sohn DH, Kang J. Synth. Commun. 2019; 49: 1181
  • 122 Andreou D, Kallitsakis MG, Loukopoulos E, Gabriel C, Kostakis GE, Lykakis IN. J. Org. Chem. 2018; 83: 2104
  • 123 Kumar V, Awasthi A, Metya A, Khan T. J. Org. Chem. 2019; 84: 11581
  • 124 Zhao D, Zhu Y, Guo S, Chen W, Zhang G, Yu Y. Tetrahedron 2017; 73: 2872
  • 125 Adib M, Ayashi N, Heidari F, Mirzaei P. Synlett 2016; 27: 1738
  • 126 Xiao Z.-F, Ding T.-H, Mao S.-W, Shah Z, Ning X.-S, Kang Y.-B. Org. Lett. 2016; 18: 5672
  • 127 Galenko EE, Tomashenko OA, Khlebnikov AF, Novikov MS. Org. Biomol. Chem. 2015; 13: 9825
  • 128 Kardile RD, Kale BS, Sharma P, Liu RS. Org. Lett. 2018; 20: 3806
  • 129 Pusch S, Kowalczyk D, Opatz T. J. Org. Chem. 2016; 81: 4170
  • 130 Paternoga J, Opatz T. Eur. J. Org. Chem. 2019; 7067
  • 131 Rostovskii NV, Ruvinskaya JO, Novikov MS, Khlebnikov AF, Smetanin IA, Agafonova AV. J. Org. Chem. 2017; 82: 256
  • 132 Galenko EE, Linnik SA, Khoroshilova OV, Novikov MS, Khlebnikov AF. J. Org. Chem. 2019; 84: 11275
  • 133 Satish G, Reddy KH. V, Ramesh K, Kumar B, Nageswar YV. D. Tetrahedron Lett. 2014; 55: 2596
  • 134 Lei X, Xie H.-Y, Chen S.-Y, Teng K.-S, Wen X, Xu Q.-L, Sun H. Tetrahedron 2015; 71: 4098
  • 135 Zhen L, Lin C, Du H.-J, Dai L, Wen X, Xu Q.-L, Sun H. Tetrahedron 2015; 71: 2839
  • 136 Saijo R, Kawase M. Eur. J. Org. Chem. 2019; 1535
  • 137 Kakaawla TK. K, Harrity JP. A. Org. Lett. 2018; 20: 201
  • 138 Lopchuk JM, Song M, Butler B, Gribble GW. Synthesis 2015; 47: 2776
  • 139 Firoozi N, Torres GM, Arndtsen BA. J. Org. Chem. 2016; 81: 11145
  • 140 Torres GM, Quesnel JS, Bijou D, Arndtsen BA. J. Am. Chem. Soc. 2016; 138: 7315
  • 141 Kumar P, Kapur M. Org. Lett. 2019; 21: 2134
  • 142 Galenko EE, Bodunov VA, Galenko AV, Novikov MS, Khlebnikov AF. J. Org. Chem. 2017; 82: 8568
  • 143 Lei X, Li L, He Y.-P, Tang Y. Org. Lett. 2015; 17: 5224
  • 144 Chen C, Cui S. J. Org. Chem. 2019; 84: 12157
  • 145 Shen X, Xia J, Liang P, Ma X, Jiao W, Shao H. Org. Biomol. Chem. 2015; 13: 10865
  • 146 Das Adhikary N, Kwon S, Chung W.-J, Koo S. J. Org. Chem. 2015; 80: 7693
  • 147 Naskar S, Roy S, Sarkar S. Synth. Commun. 2014; 44: 1629
  • 148 Wang J, Shen Q, Zhang J, Song G. Tetrahedron Lett. 2015; 56: 2913
  • 149 Jiang C.-H, Lei X, Zhen L, Du H.-J, Wen X, Xu Q.-L, Sun H. Beilstein J. Org. Chem. 2014; 10: 2892
  • 150 Du H.-J, Zhen L, Wen X, Xu Q.-L, Sun H. Org. Biomol. Chem. 2014; 12: 9716