Synlett 2021; 32(19): 1911-1933
DOI: 10.1055/s-0040-1706041
account

Diversity-Oriented Synthesis of Highly Functionalized Alicycles across Dipolar Cycloaddition/Metathesis Reaction

Zsanett Benke
a   Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
b   University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, Eötvös u. 6, 6720 Szeged, Hungary
,
Melinda Nonn
a   Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
b   University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, Eötvös u. 6, 6720 Szeged, Hungary
,
Attila M. Remete
a   Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
b   University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, Eötvös u. 6, 6720 Szeged, Hungary
,
Santos Fustero
c   Department of Organic Chemistry, University of Valencia, Pharmacy Faculty, 46100 Burjassot Valencia, Spain
,
Loránd Kiss
a   Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
b   University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, Eötvös u. 6, 6720 Szeged, Hungary
› Author Affiliations
We are grateful to the Hungarian Research Foundation (NKFIH K 119282 and FK 134586) for financial support. The financial support of the GINOP-2.3.2-15-2016-00014 project is also acknowledged. This research was supported by the EU-funded Hungarian grant (EFOP-3.6.1-16-2016-00008). Ministry of Human Capacities, Hungary (20391-3/2018/FEKUSTRAT) is also acknowledged. This work was supported by the New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund (ÚNKP-20-3).


Abstract

This Account gives an insight into the selective functionalization of some readily available commercial cyclodienes across simple chemical transformations into functionalized small-molecular scaffolds. The syntheses involved selective cycloadditions, followed by ring-opening metathesis (ROM) of the resulting azetidin-2-one derivatives or isoxazoline frameworks and selective cross metathesis (CM) by discrimination of the C=C bonds on the alkenylated heterocycles. The CM protocols have been described when investigated under various conditions with the purpose on exploring chemodifferentiation of the olefin bonds and a study on the access of the corresponding functionalized β-lactam or isoxazoline derivatives is presented. Due to the expanding importance of organofluorine chemistry in drug research as well as of the high biological potential of β-lactam derivatives several illustrative examples to the access of some fluorine-containing molecular entities is also presented in this synopsis.

1 Introduction

2 Ring C=C Bond Functionalization of Some Cycloalkene β-Amino Acid Derivatives across Chlorosulfonyl Isocyanate Cycloaddition

3 Ring C=C Bond Functionalization of Some Cycloalkene β-Amino Acid Derivatives across Nitrile Oxide Cycloaddition

4 Ring C=C Bond Functionalization of Some Cycloalkene β-Amino Acid Derivatives across Metathesis

5 Functionalization of sSome Cyclodienes across Nitrile Oxide Cycloaddition

6 Selective Synthesis of Functionalized Alicycles across Ring-Opening Metathesis

7 Selective Synthesis of Functionalized Alicycles through Cross Metathesis

8 Summary and Outlook

9 List of Abbreviations



Publication History

Received: 17 April 2021

Accepted after revision: 27 April 2021

Article published online:
19 May 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Diversity-Oriented Synthesis: Basics and Applications in Organic Synthesis, Drug Discovery, and Chemical Biology, Trabocchi A. Wiley; Hoboken: 2013
    • 1b Foley DJ, Doveston RG, Churcher I, Nelson A, Marsden SP. Chem. Commun. 2015; 51: 11174
    • 1c Spandl RJ, Diaz-Gavilan M, O’Connel JM. G, Thomas GL, Spring DL. Chem. Rec. 2008; 8: 129
  • 2 Pavlinov I, Gerlach EM, Aldrich LN. Org. Biomol. Chem. 2019; 17: 1608
  • 3 Hung AW, Ramek A, Wang Y, Kaya T, Wilson JA, Clemons PA, Young DW. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 6799
  • 4 Garcia-Castro M, Zimmermann S, Sankar MG, Kumar K. Angew. Chem. Int. Ed. 2016; 55: 7586
  • 5 O’Connor CJ, Beckmann HS. G, Spring DR. Chem. Soc. Rev. 2012; 41: 4444
  • 6 Galloway WR. J. D, Isidro-Llobet A, Spring DR. Nat. Commun. 2010; 1: 80
  • 7 Collins S, Bartlett S, Nie F, Sore H, Spring D. Synthesis 2016; 48: 1457
  • 8 Kidd SL, Osberger TJ, Mateu N, Sore HF, Spring DR. Front. Chem. 2018; 6: 460
  • 9 Gerry CJ, Schreiber SL. Curr. Opin. Chem. Biol. 2020; 56: 1
  • 10 Schrodi Y, Pederson RL. 2007; 40: 45
    • 11a Grubbs RH, Chang S. Tetrahedron 1998; 54: 4413
    • 11b Monsaert S, Vila AL, Drozdzak R, Van Der Voort P, Verpoort F. Chem. Soc. Rev. 2009; 38: 3360
    • 11c Koh MJ, Nguyen TT, Lam JK, Torker S, Hyvl J, Schrock RR, Hoveyda AH. Nature 2017; 542: 80
    • 11d Higman CS, Lummiss JA. M, Fogg DE. Angew. Chem. Int. Ed. 2016; 55: 3552
    • 11e Chikkali S, Mecking S. Angew. Chem. Int. Ed. 2012; 51: 5802
  • 12 Marsh GP, Parsons PJ, McCarthy C, Corniquet XG. Org. Lett. 2007; 9: 2613
  • 13 Kotha S, Dipak MK. Tetrahedron 2012; 68: 397
  • 14 Kiss L, Kardos M, Vass C, Fülöp F. Synthesis 2018; 50: 3571
  • 15 Prajapti SK, Shrivastava S, Bihade U, Gupta AK, Naidu VG. M, Banerjee UC, Babu BN. Med. Chem. Commun. 2015; 6: 839
  • 16 Kaur K, Kumar V, Sharma AK, Gupta GK. Eur. J. Med. Chem. 2014; 77: 121
  • 17 Kumar KA, Govindaraju M, Renuka N, Kumar V. J. Chem. Pharm. Res. 2015; 7: 250
  • 18 Kumar V, Kaur K. J. Fluor. Chem. 2015; 180: 55
  • 19 Kumar G, Shankar R. ChemMedChem 2021; 16: 430
  • 20 Tang S, He J, Sun Y, He L, She X. J. Org. Chem. 2010; 75: 1961
  • 21 Churykau D, Zinovich V, Kulinkovich O. Synlett 2004; 1949
  • 22 Karpavičiene I, Lapinskaite R, Brukštus A, Čikotiene I. Synlett 2012; 23: 381
  • 23 Liu X, Hong D, Sapir NG, Yang W, Hersh WH, Leung P.-H, Yang D, Chen Y. J. Org. Chem. 2019; 84: 16204
  • 24 Kiss L, Nonn M, Fülöp F. Synthesis 2012; 44: 1951
  • 25 Kiss L, Nonn M, Forró E, Sillanpää R, Fülöp F. Tetrahedron Lett. 2009; 50: 2605
  • 26 Nonn M, Kiss L, Forró E, Mucsi Z, Fülöp F. Tetrahedron 2011; 67: 4079
  • 27 Nonn M, Kiss L, Forró E, Sillanpää R, Mucsi Z, Fülöp F. Magy. Kém. Foly 2013; 119: 151
  • 28 Nonn M, Kiss L, Sillanpää R, Fülöp F. Beilstein J. Org. Chem. 2012; 8: 100
  • 29 Nonn M, Kiss L, Sillanpää R, Fülöp F. Tetrahedron 2012; 68: 9942
  • 30 Kardos M, Kiss L, Fülöp F. Asian J. Org. Chem. 2015; 4: 1155
  • 31 Kardos M, Kiss L, Haukka M, Fustero S, Fülöp F. Eur. J. Org. Chem. 2017; 1894
  • 32 Kiss L, Kardos M, Forró E, Fülöp F. Eur. J. Org. Chem. 2015; 1283
  • 33 Benke Z, Nonn M, Kardos M, Fustero S, Kiss L. Beilstein J. Org. Chem. 2018; 14: 2698
  • 34 Nonn M, Benke Z, Fustero S, Fülöp F, Kiss L. Eur. J. Org. Chem. 2019; 5285
  • 35 Martinek TA, Fülöp F. Chem. Soc. Rev. 2012; 41: 687
  • 36 Kiss L, Forró E, Fülöp F. In Amino Acids, Peptides and Proteins in Organic Chemistry, Vol. 1 . Hughes AB. Wiley-VCH; Weinheim: 2010: 367-409
  • 37 Forro E, Fulop F. Curr. Med. Chem. 2012; 19: 6178
  • 38 Bernal CC, Vesga LC, Mendez-Sánchez SC, Romero Bohórquez AR. Med. Chem. Res. 2020; 29: 675
  • 39 Kalaria PN, Satasia SP, Raval DK. New J. Chem. 2014; 38: 2902
  • 40 Kissane M, Maguire AR. Chem. Soc. Rev. 2010; 39: 845
  • 41 Basel Y, Hassner A. Synthesis 1997; 309
  • 42 Tran NC, Dhondt H, Flipo M, Deprez B, Willand N. Tetrahedron Lett. 2015; 56: 4119
  • 43 Wang L.-J, Tang Y. In Comprehensive Organic Synthesis II, Vol. 4 . Knochel P, Molander GA. Elsevier; Amsterdam: 2014
  • 44 Huisgen R. Angew. Chem., Int. Ed. Engl. 1963; 2: 565
    • 45a Mukaiyama T, Hoshino T. J. Am. Chem. Soc. 1960; 82: 5339
    • 45b Benke Z, Nonn M, Fülöp F, Kiss L. ChemistrySelect 2019; 4: 2886
  • 46 Bode JW, Carreira EM. Org. Lett. 2001; 3: 1587
  • 47 Jiang D, Chen Y. J. Org. Chem. 2008; 73: 9181
  • 48 Jiang H, Elsner P, Jensen KL, Falcicchio A, Marcos V, Jørgensen KA. Angew. Chem. Int. Ed. 2009; 48: 6844
  • 49 Marotta E, Micheloni LM, Scardovi N, Righi P. Org. Lett. 2001; 3: 727
  • 50 Tokizane M, Sato K, Ohta T, Ito Y. Tetrahedron: Asymmetry 2008; 19: 2519
  • 51 Wen W.-H, Wang S.-Y, Tsai K.-C, Cheng Y.-SE, Yang A.-S, Fang J.-M, Wong C.-H. Bioorg. Med. Chem. 2010; 18: 4074
  • 52 Honda T, Kubo S, Masuda T, Arai M, Kobayashi Y, Yamashita M. Bioorg. Med. Chem. Lett. 2009; 19: 2938
  • 53 Watson KG, Cameron R, Fenton RJ, Gower D, Hamilton S, Jin B, Krippner GY, Luttick A, McConnell D, MacDonald SJ. F, Mason AM, Nguyen V, Tucker SP, Wu W.-Y. Bioorg. Med. Chem. Lett. 2004; 14: 1589
  • 54 Kipassa NT, Okamura H, Kina K, Hamada T, Iwagawa T. Org. Lett. 2008; 10: 815
  • 55 Chand P, Bantia S, Kotian PL, El-Kattan Y, Lin T.-H, Babu YS. Bioorg. Med. Chem. 2005; 13: 4071
  • 56 Erba E, La Rosa C. Tetrahedron 2016; 72: 7975
  • 57 Liu KK.-C, Sakya SM, O’Donnell CJ, Flick AC, Ding HX. Bioorg. Med. Chem. 2012; 20: 1155
  • 58 Bartolotta R, La Rosa C, Nava D. Synthesis 2020; 52: 933
  • 59 Chiu D.-C, Lin T.-C, Huang W.-I, Cheng T.-J, Tsai K.-C, Fang J.-M. Org. Biomol. Chem. 2017; 15: 9910
  • 60 Hsu P.-H, Chiu D.-C, Wu K.-L, Lee P.-S, Jan J.-T, Cheng Y.-SE, Tsai K.-C, Cheng T.-J, Fang J.-M. Eur. J. Med. Chem. 2018; 154: 314
  • 61 Delaude L, Noels AF. In Kirk-Othmer Encycl. Chem. Technol. . John Wiley & Sons; Hoboken: 2005
  • 62 Chauvin Y. Angew. Chem. Int. Ed. 2006; 45: 3740
  • 63 Olefin Metathesis: Theory and Practice . Grela K. John Wiley & Sons; Hoboken: 2014
  • 64 Hérisson PJ.-L, Chauvin Y. Makromol. Chem. 1971; 141: 161
  • 65 Vougioukalakis GC, Grubbs RH. Chem. Rev. 2010; 110: 1746
  • 66 Trnka TM, Grubbs RH. Acc. Chem. Res. 2001; 34: 18
  • 67 Kiss L, Forró E, Fustero S, Fülöp F. Org. Biomol. Chem. 2011; 9: 6528
  • 68 Kiss L, Forró E, Fustero S, Fülöp F. Eur. J. Org. Chem. 2011; 4993
  • 69 Namboothiri IN. N, Rastogi N. In Synthesis of Heterocycles via Cycloadditions I . Hassner A. Springer; Berlin/Heidelberg: 2008
  • 70 Grundmann C, Datta SK. J. Org. Chem. 1969; 34: 2016
  • 71 Curran DP, Fenk CJ. J. Am. Chem. Soc. 1985; 107: 6023
  • 72 Tranmer GK, Tam W. Org. Lett. 2002; 4: 4101
  • 73 Sanford MS, Love JA, Grubbs RH. J. Am. Chem. Soc. 2001; 123: 6543
  • 74 Dias EL, Nguyen ST, Grubbs RH. J. Am. Chem. Soc. 1997; 119: 3887
  • 75 Occhipinti G, Bjørsvik H.-R, Jensen VR. J. Am. Chem. Soc. 2006; 128: 6952
  • 76 Adlhart C, Chen P. J. Am. Chem. Soc. 2004; 126: 3496
  • 77 Love JA, Morgan JP, Trnka TM, Grubbs RH. Angew. Chem. 2002; 114: 4207
  • 78 Dinger MB, Mol JC. Organometallics 2003; 22: 1089
  • 79 Dinger MB, Mol JC. Eur. J. Inorg. Chem. 2003; 2827
  • 80 Jawiczuk M, Marczyk A, Trzaskowski B. Catalysts 2020; 10: 887
  • 81 Fluorine in Medicinal Chemistry and Chemical Biology, Ojima I. Wiley-Blackwell; Chichester: 2009
  • 82 Fried J, Sabo EF. J. Am. Chem. Soc. 1954; 76: 1455
  • 83 Fustero S, Simón-Fuentes A, Barrio P, Haufe G. Chem. Rev. 2015; 115: 871
  • 84 Mei H, Remete AM, Zou Y, Moriwaki H, Fustero S, Kiss L, Soloshonok VA, Han J. Chin. Chem. Lett. 2020; 31: 2401
  • 85 Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
  • 86 Kotian SY, Abishad PM, Byrappa K, Rai KM. L. J. Chem. Sci. 2019; 131: 46
  • 87 Park K.-K, Ko D.-H, You Z, Khan MO. F, Lee HJ. Steroids 2006; 71: 183
  • 88 Han J, Remete AM, Dobson LS, Kiss L, Izawa K, Moriwaki H, Soloshonok VA, O’Hagan D. J. Fluor. Chem. 2020; 239: 109639
  • 89 Gonçalves RS. B, Dos Santos M, Bernadat G, Bonnet-Delpon D, Crousse B. Beilstein J. Org. Chem. 2013; 9: 2387
  • 90 Bonacorso HG, Ketzer A, Garcia FD, Rosa WC, Calheiro TP, Feitosa SC, Dal Forno GM, Zanatta N, Martins MA. P, Frizzo CP. J. Fluor. Chem. 2017; 197: 6
  • 92 Chatterjee AK, Choi T.-L, Sanders DP, Grubbs RH. J. Am. Chem. Soc. 2003; 125: 11360