Synthesis 2021; 53(07): 1181-1199
DOI: 10.1055/s-0040-1705991
review

Intramolecular Diels–Alder Reactions of Oxazoles, Imidazoles, and Thiazoles

Thanh T. Nguyen
a   Department of Chemistry, University of Pittsburgh, Pittsburgh PA 15260, USA
,
Peter Wipf
a   Department of Chemistry, University of Pittsburgh, Pittsburgh PA 15260, USA
b   Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh PA 15261, USA
› Author Affiliations


Abstract

The development of the intramolecular Diels–Alder cycloaddition­ of azole heterocycles, i.e. oxazoles (IMDAO), imidazoles (IMDAI), and thiazoles (IMDAT), has had a significant impact on the efficient preparation of heterocyclic intermediates and natural products. In particular, highly efficient and versatile IMDAO reactions have been utilized as a key step in several synthetic schemes to provide alkaloids and terpenoid target molecules. More limited studies have been performed on IMDAI and IMDAT cycloadditions. Some drawbacks, such as the occasionally­ challenging preparation of IMDA precursors, are also highlighted in this review. Perspectives are provided on how IMDAI and IMDAT­ transformations can be further expanded for target-directed syntheses.

1 Introduction

2 Oxazoles

2.1 IMDAO Approaches to Furanosesquiterpenes and Furanosteroids

2.1.1 Syntheses of Highly Oxygenated Sesquiterpenes

2.1.2 Syntheses of (±)-Gnididione and (±)-Isognididione

2.1.3 Synthesis of (±)-Stemoamide

2.1.4 Synthesis of (±)-Paniculide A

2.1.5 Syntheses of (+)- and (–)-Norsecurinine

2.1.6 Synthesis of Evodone

2.1.7 Syntheses of (±)-Ligularone and (±)-Petasalbine

2.1.8 Syntheses of Imerubrine, Isoimerubrine, and Grandirubrine

2.1.9 Syntheses of Furanosteroids

2.1.10 Syntheses of Substituted Indolines and Tetrahydroquinolines

2.2 IMDAO Approaches to Pyridines: the Kondrat’eva Reaction

2.2.1 Syntheses of Suaveoline and Norsuaveoline

2.2.2 Synthesis of Eupolauramine

2.2.3 Syntheses of (–)-Plectrodorine and (+)-Oxerine

2.2.4 Synthesis of Amphimedine

2.2.5 Synthetic Approach to the Western Segment of Haplophytine

2.2.6 Synthesis of Marinoquinoline A

2.2.6.1 IMDAO Approach to Marinoquinoline A

2.2.6.2 Scope of Allenyl IMDAO Cycloaddition

2.3 Lewis Acid Catalysis in IMDAO Reactions

2.3.1 Effects of Europium Catalysts on IMDAO Reactions

2.3.2 Effects of Copper Catalysts on IMDAO Reactions

3 Imidazoles

4 Thiazoles

4.1 Syntheses of Menthane and Eremophilane

4.2 Further Comments on the Intramolecular Cycloadditions of Thiocarbonyl Ylides

5 Conclusions and Outlook



Publication History

Received: 03 October 2020

Accepted after revision: 30 October 2020

Article published online:
14 December 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Boger DL. Chem. Rev. 1986; 86: 781
  • 2 Horner KE, Karadakov PB. J. Org. Chem. 2015; 80: 7150
  • 3 Dey S, Manogaran D, Manogaran S, Schaefer HF. J. Phys. Chem. A 2018; 122: 6953
  • 4 Vasil’ev NV, Koshelev VM, Romanov DV, Lyssenko KA, Antipin MY, Zatonskii GV. Russ. Chem. Bull. 2005; 54: 1680
  • 5 Suárez-Moreno GV, González-Zamora E, Méndez F. Org. Lett. 2011; 13: 6358
  • 6 Islas-Jacome A, Renteria-Gomez A, Renteria-Gomez MA, Gonzalez-Zamora E, Jimenez-Halla JO. C, Gamez-Montano R. Tetrahedron Lett. 2016; 57: 3496
    • 7a Kupchan SM, Baxter RL, Chiang C.-K, Gilmore CJ, Bryan RF. J. Chem. Soc, Chem. Commun. 1973; 842
    • 7b Kupchan MS, Hemingway RJ, Werner D, Karim A. J. Org. Chem. 1969; 34, 3903
    • 7c Allison AJ, Butcher DN, Connolly JD, Overton KH. Chem. Commun. 1968; 1493
  • 8 Grieco PA, Oguri T, Gilman S, DeTitta GT. J. Am. Chem. Soc. 1978; 100: 1616
  • 9 Kieczykowski GR, Schlessinger RH. J. Am. Chem. Soc. 1978; 100: 1938
  • 10 Smith AB. III, Richmond RE. J. Am. Chem. Soc. 1983; 105: 575
  • 11 Jacobi PA, Craig T. J. Am. Chem. Soc. 1978; 100: 7748
  • 12 Kupchan SM, Shizuri Y, Baxter RL, Haynes HR. J. Org. Chem. 1977; 42: 348
  • 13 Ramsey HD. Texas Tech University USA: Ph.D. Thesis; 1980
  • 14 Jacobi PA, Selnick HG. J. Am. Chem. Soc. 1984; 106: 3041
  • 15 Jacobi PA, Selnick HG. J. Org. Chem. 1990; 55: 202
  • 16 Lin WH, Ye Y, Xu RS. J. Nat. Prod. 1992; 55: 571
  • 17 Nakayama Y, Maeda Y, Hama N, Sato T, Chida N. Synthesis 2016; 48: 1647
  • 18 Jacobi PA, Lee K. J. Am. Chem. Soc. 1997; 119: 3409
  • 19 Amano S, Takemura N, Ohtsuka M, Ogawa S, Chida N. Tetrahedron 1999; 55: 3855
  • 20 Jacobi PA, Kaczmarek CS, Udodong UE. Tetrahedron 1987; 43: 5475
  • 21 Iketubosin GO, Mathieson DW. J. Pharm. Pharmacol. 1963; 15: 810
  • 22 Rouffiac R, Perello J. Plant. Med. Phytother. 1969; 3: 220
  • 23 Heathcock CH, von Geldern TW. Heterocycles 1987; 25: 75
  • 24 Jacobi PA, Blum CA, DeSimone RW, Udodong UE. Tetrahedron Lett. 1989; 30: 7173
  • 25 Birch AJ, Richards RW. Aust. J. Chem. 1956; 9: 241 ; and references contained therein
  • 26 Srikrishna A, Krishnan K. Tetrahedron Lett. 1988; 29: 4995
  • 27 Jacobi PA, Walker DG, Odeh IM. A. J. Org. Chem. 1981; 46: 2065
  • 28 Yamakawa K, Satoh T. Chem. Pharm. Bull. 1977; 25: 2535 ; and references contained therein
  • 29 Yamakawa K, Satoh T. Chem. Pharm. Bull. 1979; 27: 1747
  • 30 Jacobi PA, Walker DG. J. Am. Chem. Soc. 1981; 103: 4611
  • 31 Banwell MG, Ireland NK. J. Chem. Soc., Chem. Commun. 1994; 591 ; and references contained therein
  • 32 Banwell MG. Pure Appl. Chem. 1996; 68: 539 ; and references contained therein
  • 33 Boger DL, Takahashi K. J. Am. Chem. Soc. 1995; 117: 12452 ; and references contained therein
  • 34 Lee JC, Cha JK. J. Am. Chem. Soc. 2001; 123: 3243
  • 35 Wipf P, Halter RJ. Org. Biomol. Chem. 2005; 3: 2053
  • 36 Ihle NT, Williams R, Chow S, Chew W, Berggren MI, Paine-Murrieta G, Minion DJ, Halter RJ, Wipf P, Abraham R, Kirkpatrick L, Powis G. Mol. Cancer Ther. 2004; 3: 763
  • 37 Brian PW, McGowan JG. Nature 1945; 156: 144
  • 38 Ji Y, Xin Z, He H, Gao S. J. Am. Chem. Soc. 2019; 141: 16208
  • 39 Brian PW, Curtis PJ, Hemming HG, Norris GL. F. Trans. Br. Mycol. Soc. 1957; 40: 365
  • 40 Mizutani T, Honzawa S, Tosaki SY, Shibasaki M. Angew. Chem. Int. Ed. 2002; 41: 4680
  • 41 Onyango EO, Jacobi PA. J. Org. Chem. 2012; 77: 7411
  • 42 Noshita T, Miyashita H, Shimizu H, Shimada T, Kaji N, Funayama S. Nat. Med. (Tokyo, Jpn.) 2002; 56: 216
  • 43 Hayakawa K, Yasukouchi T, Kanematsu K. Tetrahedron Lett. 1987; 28: 5895
  • 44 Padwa A, Brodney MA, Liu B, Satake K, Wu T. J. Org. Chem. 1999; 64: 3595
  • 45 Majumdar SP, Potier P, Poisson J. Tetrahedron Lett. 1972; 13: 1563
  • 46 Nasser AM. A. G, Court WE. J. Ethnopharmacol. 1984; 11: 99
  • 47 Trudell ML, Cook JM. J. Am. Chem. Soc. 1989; 111: 7504
  • 48 Wang T, Yu P, Li J, Cook JM. Tetrahedron Lett. 1998; 39: 8009
  • 49 Ohba M, Natsutani I, Sakuma T. Tetrahedron Lett. 2004; 45: 6471
  • 50 Bowden B, Ritchie E, Taylor W. Aust. J. Chem. 1972; 25: 2659
  • 51 Kikugawa Y, Kawase M, Miyake Y, Sakamoto T, Shimada M. Tetrahedron Lett. 1988; 29: 4297
  • 52 Levin JI, Weinreb SM. J. Am. Chem. Soc. 1983; 105: 1397
  • 53 Gournelis D, Skaltsounis AL, Tillequin F, Koch M, Pusset J, Labarre S. J. Nat. Prod. 1989; 52: 306
  • 54 Benkrief R, Skaltsounis AL, Tillequin F, Koch M, Pusset J. Planta Med. 1991; 57: 79
  • 55 Aoyagi Y, Inariyama T, Arai Y, Tsuchida S, Matuda Y, Kobayashi H, Ohta A, Kurihara T, Fujihira S. Tetrahedron 1994; 50: 13575
  • 56 Ohba M, Izuta R, Shimizu E. Chem. Pharm. Bull. 2006; 54: 63
  • 57 Schmitz FJ, Agarwal SK, Gunasekera SP, Schmidt PG, Shoolery JN. J. Am. Chem. Soc. 1983; 105: 4835
  • 58 Kobayashi J, Cheng J.-F, Wälchli MR, Nakamura H, Hirata Y, Sasaki T, Ohizumi Y. J. Org. Chem. 1988; 53: 1800
  • 59 Molinski TF, Fahy E, Faulkner DJ, Van Duyne GD, Clardy J. J. Org. Chem. 1988; 53: 1340
  • 60 Echavarren AM, Stille JK. J. Am. Chem. Soc. 1988; 110: 4051
  • 61 Ciufolini MA, Byrne NE. J. Am. Chem. Soc. 1991; 113: 8016
  • 62 Subramanyam C, Noguchi M, Weinreb SM. J. Org. Chem. 1989; 54: 5580
  • 63 Rogers EF, Snyder HR, Fischer RF. J. Am. Chem. Soc. 1952; 74: 1987
  • 64 Ueda H, Satoh H, Matsumoto K, Sugimoto K, Fukuyama T, Tokuyama H. Angew. Chem. Int. Ed. 2009; 48: 7600
  • 65 Chughtai M, Eagan JM, Padwa A. Synlett 2011; 215
  • 66 Kanjana-opas A, Panphon S, Fun HK, Chantrapromma S. Acta Crystallogr., Sect. E 2006; 62: o2728
  • 67 Mahajan JP, Suryawanshi YR, Mhaske SB. Org. Lett. 2012; 14: 5804
  • 68 Osano M, Jhaveri DP, Wipf P. Org. Lett. 2020; 22: 2215
  • 69 Levin JI. Tetrahedron Lett. 1989; 30: 2355
  • 70 Ohba M, Izuta R. Heterocycles 2001; 55: 823
  • 71 Talele TT. J. Med. Chem. 2018; 61: 2166
  • 72 Wuonola MA, Smallheer JM. Tetrahedron Lett. 1992; 33: 5697
  • 73 Jacobi PA, Egbertson M, Frechette RF, Miao CK, Weiss KT. Tetrahedron 1988; 44: 3327
  • 74 Potts KT, Dery MO. J. Chem. Soc., Chem. Commun. 1986; 561
  • 75 Potts KT, Dery MO, Juzukonis WA. J. Org. Chem. 1989; 54: 1077

    • See, for example:
    • 76a Osterhout MH, Nadler WR, Padwa A. Synthesis 1994; 123
    • 76b Heidelbaugh TM, Liu B, Padwa A. Tetrahedron Lett. 1998; 39: 4757
  • 77 Heravi MM, Vavsari VF. RSC Adv. 2015; 5: 50890
  • 78 Parvatkar PT, Kadam HK, Tilve SG. Tetrahedron 2014; 70: 2857
  • 79 Lehmann J, Alzieu T, Martin RE, Britton R. Org. Lett. 2013; 15: 3550